Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using ASEconvert
using DFTK
using LazyArtifacts

ase_Al    = ase.build.bulk("Al"; cubic=true) * pytuple((4, 1, 1))
system_Al = attach_psp(pyconvert(AbstractSystem, ase_Al);
                       Al=artifact"pd_nc_sr_pbe_standard_0.4.1_upf/Al.upf")
FlexibleSystem(Al₁₆, periodic = TTT):
    bounding_box      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

      .---------------------------------------.  
     /|                                       |  
    * |                                       |  
    |Al        Al        Al        Al         |  
    | |                                       |  
    | .--Al--------Al--------Al--------Al-----.  
    |/    Al        Al        Al        Al   /   
    Al--------Al--------Al--------Al--------*    

and we discretise:

model_Al = model_LDA(system_Al; temperature=1e-3, symmetries=false)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -35.97981658525                   -0.86   13.0    366ms
  2   -35.93804429713   +   -1.38       -1.53    1.0   88.4ms
  3   +11.09753977603   +    1.67       -0.23    7.0    212ms
  4   -35.92948387565        1.67       -1.24    9.0    246ms
  5   -35.94449046271       -1.82       -1.61    2.0    118ms
  6   -35.95420237704       -2.01       -1.69    2.0    106ms
  7   -35.44722887040   +   -0.30       -1.20    4.0    146ms
  8   -35.98457164922       -0.27       -2.07    3.0    151ms
  9   -35.98856221782       -2.40       -2.12    2.0    131ms
 10   -35.98837160542   +   -3.72       -2.20    2.0    119ms
 11   -35.98947926686       -2.96       -2.67    2.0    108ms
 12   -35.98961195725       -3.88       -2.94    1.0   92.1ms
 13   -35.98962393316       -4.92       -3.30    2.0    123ms
 14   -35.98962058209   +   -5.47       -3.14    3.0    136ms
 15   -35.98956738266   +   -4.27       -3.16    3.0    126ms
 16   -35.98961969383       -4.28       -3.49    3.0    138ms
 17   -35.98963094148       -4.95       -3.81    2.0    109ms
 18   -35.98963185038       -6.04       -4.37    3.0    116ms
 19   -35.98963083347   +   -5.99       -3.99    3.0    146ms
 20   -35.98963181984       -6.01       -4.39    4.0    144ms
 21   -35.98963187588       -7.25       -4.39    2.0    108ms
 22   -35.98963197661       -7.00       -4.74    2.0    100ms
 23   -35.98963198038       -8.42       -5.05    3.0    134ms
 24   -35.98963198395       -8.45       -5.25    2.0    113ms
 25   -35.98963198433       -9.42       -5.37    1.0    106ms
 26   -35.98963198427   +  -10.24       -5.18    3.0    129ms
 27   -35.98963198607       -8.75       -6.05    2.0   98.4ms
 28   -35.98963198608      -10.84       -6.02    3.0    141ms
 29   -35.98963198604   +  -10.35       -5.91    2.0    112ms
 30   -35.98963198605      -10.83       -6.10    3.0    126ms
 31   -35.98963198611      -10.21       -6.27    2.0    110ms
 32   -35.98963198613      -10.75       -6.89    2.0    100ms
 33   -35.98963198612   +  -11.11       -6.58    3.0    143ms
 34   -35.98963198613      -11.15       -6.94    3.0    136ms
 35   -35.98963198613      -12.50       -7.01    2.0    120ms
 36   -35.98963198613      -12.19       -7.16    2.0    100ms
 37   -35.98963198613      -12.81       -7.50    2.0    100ms
 38   -35.98963198613   +  -13.85       -7.54    2.0    127ms
 39   -35.98963198613      -13.67       -7.70    3.0    116ms
 40   -35.98963198613      -13.55       -7.83    1.0   96.8ms
 41   -35.98963198613      -14.15       -8.57    1.0   93.2ms
 42   -35.98963198613      -14.15       -8.70    3.0    140ms
 43   -35.98963198613   +  -14.15       -8.66    5.0    144ms
 44   -35.98963198613   +    -Inf       -9.04    2.0    112ms
 45   -35.98963198613      -14.15       -9.01    3.0    137ms
 46   -35.98963198613   +    -Inf       -8.93    2.0    120ms
 47   -35.98963198613   +    -Inf       -9.42    2.0    109ms
 48   -35.98963198613   +    -Inf       -9.77    2.0    110ms
 49   -35.98963198613   +    -Inf       -9.72    3.0    134ms
 50   -35.98963198613   +    -Inf       -9.76    2.0    113ms
 51   -35.98963198613   +    -Inf      -10.22    2.0    110ms
 52   -35.98963198613   +  -14.15      -10.45    2.0    117ms
 53   -35.98963198613   +    -Inf      -10.66    2.0    130ms
 54   -35.98963198613      -14.15      -10.83    5.0    129ms
 55   -35.98963198613   +    -Inf      -10.85    1.0   93.9ms
 56   -35.98963198613   +    -Inf      -11.24    2.0    105ms
 57   -35.98963198613   +    -Inf      -11.47    3.0    136ms
 58   -35.98963198613   +  -14.15      -11.49    3.0    117ms
 59   -35.98963198613      -14.15      -11.79    2.0    110ms
 60   -35.98963198613   +    -Inf      -12.08    1.0   92.6ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -35.98238251815                   -0.86   11.0    351ms
  2   -35.98783086439       -2.26       -1.34    1.0   88.8ms
  3   -35.98738844474   +   -3.35       -1.70    6.0    130ms
  4   -35.98939347500       -2.70       -2.25    1.0   88.6ms
  5   -35.98954556104       -3.82       -2.49    6.0    156ms
  6   -35.98960904463       -4.20       -2.65    2.0   98.1ms
  7   -35.98961279580       -5.43       -2.94    2.0   97.8ms
  8   -35.98962415713       -4.94       -3.10    2.0    101ms
  9   -35.98962969502       -5.26       -3.50    8.0    136ms
 10   -35.98963171931       -5.69       -4.18    6.0    132ms
 11   -35.98963176905       -7.30       -4.26    4.0    150ms
 12   -35.98963197204       -6.69       -4.55    2.0    110ms
 13   -35.98963196033   +   -7.93       -4.80    2.0    127ms
 14   -35.98963198575       -7.59       -5.51    2.0    101ms
 15   -35.98963198602       -9.56       -5.79    4.0    160ms
 16   -35.98963198612      -10.02       -6.15    2.0    118ms
 17   -35.98963198611   +  -11.26       -6.38    3.0    137ms
 18   -35.98963198613      -10.83       -6.64    5.0    129ms
 19   -35.98963198613      -11.62       -7.17    2.0    101ms
 20   -35.98963198613   +  -12.66       -7.22    3.0    141ms
 21   -35.98963198613      -12.57       -7.85    2.0    100ms
 22   -35.98963198613      -13.67       -7.92    3.0    136ms
 23   -35.98963198613   +  -14.15       -8.45    1.0   93.2ms
 24   -35.98963198613      -14.15       -8.74    5.0    126ms
 25   -35.98963198613   +  -13.85       -8.89    3.0    142ms
 26   -35.98963198613      -13.85       -9.25    1.0   93.6ms
 27   -35.98963198613   +  -14.15       -9.58    3.0    116ms
 28   -35.98963198613   +  -13.85       -9.89    3.0    135ms
 29   -35.98963198613      -13.85      -10.31    2.0    103ms
 30   -35.98963198613   +  -13.85      -10.70    3.0    154ms
 31   -35.98963198613      -13.85      -10.89   10.0    206ms
 32   -35.98963198613   +    -Inf      -11.17    5.0    141ms
 33   -35.98963198613   +    -Inf      -11.50    2.0    181ms
 34   -35.98963198613   +    -Inf      -11.86    2.0    106ms
 35   -35.98963198613   +    -Inf      -12.42    2.0    101ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV)
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.387452180856535

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.62547497989132

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.68545844693817

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).