# Publications

Since DFTK is mostly developed as part of academic research, we would greatly appreciate if you cite our research papers as appropriate. See the CITATION.bib in the root of the DFTK repo and the publication list on this page for relevant citations. The current DFTK reference paper to cite is

```
@article{DFTKjcon,
author = {Michael F. Herbst and Antoine Levitt and Eric Cancès},
doi = {10.21105/jcon.00069},
journal = {Proc. JuliaCon Conf.},
title = {DFTK: A Julian approach for simulating electrons in solids},
volume = {3},
pages = {69},
year = {2021},
}
```

Additionally the following publications describe DFTK or one of its algorithms:

E. Cancès, M. Hassan and L. Vidal.

*Modified-Operator Method for the Calculation of Band Diagrams of Crystalline Materials.*Math. Comp.**93**, 1203 (2024). ArXiv:2210.00442. (Supplementary material and computational scripts.E. Cancès, M. F. Herbst, G. Kemlin, A. Levitt and B. Stamm.

*Numerical stability and efficiency of response property calculations in density functional theory*Letters in Mathematical Physics,**113**, 21 (2023). ArXiv:2210.04512. (Supplementary material and computational scripts).M. F. Herbst and A. Levitt.

*A robust and efficient line search for self-consistent field iterations*Journal of Computational Physics,**459**, 111127 (2022). ArXiv:2109.14018. (Supplementary material and computational scripts).M. F. Herbst, A. Levitt and E. Cancès.

*DFTK: A Julian approach for simulating electrons in solids.*JuliaCon Proceedings,**3**, 69 (2021).M. F. Herbst and A. Levitt.

*Black-box inhomogeneous preconditioning for self-consistent field iterations in density functional theory*. Journal of Physics: Condensed Matter,**33**, 085503 (2021). ArXiv:2009.01665. (Supplementary material and computational scripts).

## Research conducted with DFTK

The following publications report research employing DFTK as a core component. Feel free to drop us a line if you want your work to be added here.

J. Cazalis.

*Dirac cones for a mean-field model of graphene*Pure and Appl. Anal.,**6**, 1 (2024). ArXiv:2207.09893. (Computational script).E. Cancès, G. Kemlin, A. Levitt.

*A Priori Error Analysis of Linear and Nonlinear Periodic Schr\"{o}dinger Equations with Analytic Potentials*J. Sci. Comp.,**98**, 25 (2024). ArXiv:2206.04954.E. Cancès, L. Garrigue, D. Gontier.

*A simple derivation of moiré-scale continuous models for twisted bilayer graphene*Physical Review B,**107**, 155403 (2023). ArXiv:2206.05685.G. Dusson, I. Sigal and B. Stamm.

*Analysis of the Feshbach-Schur method for the Fourier spectral discretizations of Schrödinger operators*Mathematics of Computation,**92**, 217 (2023). ArXiv:2008.10871.E. Cancès, G. Dusson, G. Kemlin and A. Levitt.

*Practical error bounds for properties in plane-wave electronic structure calculations*SIAM Journal on Scientific Computing,**44**, B1312 (2022). ArXiv:2111.01470. (Supplementary material and computational scripts).E. Cancès, G. Kemlin and A. Levitt.

*Convergence analysis of direct minimization and self-consistent iterations*SIAM Journal on Matrix Analysis and Applications,**42**, 243 (2021). ArXiv:2004.09088. (Computational script).M. F. Herbst, A. Levitt and E. Cancès.

*A posteriori error estimation for the non-self-consistent Kohn-Sham equations.*Faraday Discussions,**224**, 227 (2020). ArXiv:2004.13549. (Reference implementation).