Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using ASEconvert
using DFTK
using LazyArtifacts

ase_Al    = ase.build.bulk("Al"; cubic=true) * pytuple((4, 1, 1))
system_Al = attach_psp(pyconvert(AbstractSystem, ase_Al);
                       Al=artifact"pd_nc_sr_pbe_standard_0.4.1_upf/Al.upf")
FlexibleSystem(Al₁₆, periodic = TTT):
    bounding_box      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

      .---------------------------------------.  
     /|                                       |  
    * |                                       |  
    |Al        Al        Al        Al         |  
    | |                                       |  
    | .--Al--------Al--------Al--------Al-----.  
    |/    Al        Al        Al        Al   /   
    Al--------Al--------Al--------Al--------*    

and we discretise:

model_Al = model_LDA(system_Al; temperature=1e-3, symmetries=false)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -35.97952583063                   -0.86   10.0    385ms
  2   -35.93502095675   +   -1.35       -1.51    1.0   91.0ms
  3   +11.71496685359   +    1.68       -0.23    7.0    263ms
  4   -35.83503144533        1.68       -1.12    8.0    289ms
  5   -35.93028394113       -1.02       -1.50    3.0    146ms
  6   -35.97905866242       -1.31       -1.82    2.0    112ms
  7   -35.50217257411   +   -0.32       -1.22    4.0    172ms
  8   -35.97201711349       -0.33       -1.85    4.0    158ms
  9   -35.98869552979       -1.78       -2.27    2.0    103ms
 10   -35.98769083153   +   -3.00       -2.08    2.0    143ms
 11   -35.98944018643       -2.76       -2.55    2.0    171ms
 12   -35.98971192890       -3.57       -2.76    1.0   97.5ms
 13   -35.98975807497       -4.34       -3.12    1.0   99.1ms
 14   -35.98976390919       -5.23       -3.24    2.0    139ms
 15   -35.98927959496   +   -3.31       -2.72    4.0    160ms
 16   -35.98969950173       -3.38       -3.05    4.0    160ms
 17   -35.98975263529       -4.27       -3.38    2.0    126ms
 18   -35.98976053949       -5.10       -3.55    3.0    149ms
 19   -35.98976384835       -5.48       -3.81    2.0    175ms
 20   -35.98973677450   +   -4.57       -3.32    4.0    183ms
 21   -35.98976664443       -4.52       -4.28    3.0    152ms
 22   -35.98976662238   +   -7.66       -4.32    3.0    148ms
 23   -35.98976676822       -6.84       -4.80    2.0    107ms
 24   -35.98976677429       -8.22       -4.93    3.0    148ms
 25   -35.98976676205   +   -7.91       -4.74    3.0    133ms
 26   -35.98976678317       -7.68       -5.28    2.0    150ms
 27   -35.98976678301   +   -9.80       -5.39    2.0    138ms
 28   -35.98976678368       -9.17       -5.56    5.0    149ms
 29   -35.98976678443       -9.13       -5.93    1.0   97.6ms
 30   -35.98976678390   +   -9.28       -5.54    3.0    153ms
 31   -35.98976678427       -9.44       -5.82    4.0    159ms
 32   -35.98976678448       -9.68       -6.15    5.0    152ms
 33   -35.98976678418   +   -9.54       -5.77    4.0    202ms
 34   -35.98976678452       -9.47       -6.49    3.0    151ms
 35   -35.98976678452      -11.92       -6.79    2.0    117ms
 36   -35.98976678452      -11.74       -7.20    2.0    137ms
 37   -35.98976678452   +  -11.39       -6.73    4.0    160ms
 38   -35.98976678452      -11.38       -7.42    4.0    160ms
 39   -35.98976678452      -13.55       -7.71    2.0    144ms
 40   -35.98976678452   +  -12.81       -7.35    3.0    180ms
 41   -35.98976678452      -12.81       -7.94    7.0    187ms
 42   -35.98976678452      -13.85       -8.49    2.0    107ms
 43   -35.98976678452   +    -Inf       -8.66    4.0    156ms
 44   -35.98976678452   +    -Inf       -8.81    2.0    119ms
 45   -35.98976678452   +  -13.85       -8.82    2.0    107ms
 46   -35.98976678452      -14.15       -9.12    2.0    109ms
 47   -35.98976678452   +  -14.15       -9.38    2.0    143ms
 48   -35.98976678452   +    -Inf       -9.60    2.0    166ms
 49   -35.98976678452      -14.15       -9.47    3.0    141ms
 50   -35.98976678452      -14.15      -10.00    2.0    119ms
 51   -35.98976678452   +  -13.85      -10.11    3.0    150ms
 52   -35.98976678452      -13.85      -10.38    1.0   98.1ms
 53   -35.98976678452   +    -Inf      -10.23    4.0    162ms
 54   -35.98976678452   +  -13.85      -10.51    3.0    164ms
 55   -35.98976678452   +    -Inf      -11.12    2.0    136ms
 56   -35.98976678452      -13.85      -11.29    4.0    171ms
 57   -35.98976678452   +    -Inf      -11.84    2.0    116ms
 58   -35.98976678452   +    -Inf      -11.68    3.0    160ms
 59   -35.98976678452   +    -Inf      -11.86    3.0    141ms
 60   -35.98976678452   +  -13.85      -11.74    2.0    129ms
 61   -35.98976678452      -13.67      -12.48    2.0    147ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -35.98287709775                   -0.86   10.0    429ms
  2   -35.98808969606       -2.28       -1.34    1.0   92.7ms
  3   -35.98776893400   +   -3.49       -1.75    4.0    146ms
  4   -35.98952299799       -2.76       -2.19    1.0   93.7ms
  5   -35.98968615438       -3.79       -2.93    4.0    128ms
  6   -35.98969750357       -4.95       -2.81    4.0    232ms
  7   -35.98975939903       -4.21       -3.24    3.0    120ms
  8   -35.98976030549       -6.04       -3.38    3.0    147ms
  9   -35.98975946319   +   -6.07       -3.52    2.0    118ms
 10   -35.98976631600       -5.16       -3.93    1.0   97.0ms
 11   -35.98976658601       -6.57       -4.29    2.0    137ms
 12   -35.98976676381       -6.75       -4.55    5.0    140ms
 13   -35.98976677909       -7.82       -4.88    2.0    117ms
 14   -35.98976678436       -8.28       -5.75    8.0    222ms
 15   -35.98976678452       -9.80       -5.81    3.0    172ms
 16   -35.98976678445   +  -10.17       -5.88    2.0    139ms
 17   -35.98976678450      -10.28       -6.25    1.0   99.1ms
 18   -35.98976678452      -10.65       -6.71    3.0    130ms
 19   -35.98976678452      -13.45       -7.05    3.0    144ms
 20   -35.98976678452      -12.60       -7.42    3.0    155ms
 21   -35.98976678452      -13.37       -7.92    1.0    145ms
 22   -35.98976678452   +    -Inf       -8.18    6.0    183ms
 23   -35.98976678452   +  -14.15       -8.54    9.0    194ms
 24   -35.98976678452      -13.85       -8.97    3.0    151ms
 25   -35.98976678452   +  -13.85       -9.20    5.0    142ms
 26   -35.98976678452      -13.85       -9.51    2.0    143ms
 27   -35.98976678452   +  -13.85      -10.12    1.0    100ms
 28   -35.98976678452      -13.85      -10.55    4.0    214ms
 29   -35.98976678452   +  -13.85      -10.83    3.0    152ms
 30   -35.98976678452      -13.85      -11.28    2.0    111ms
 31   -35.98976678452   +  -13.85      -11.51    4.0    164ms
 32   -35.98976678452   +    -Inf      -12.01    7.0    163ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV)
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.38745571346606

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.62547869061561

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.6854599422886105

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).