Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model. Values up to1e-2atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solvertoself_consistent_field, e.g.solver = scf_anderson_solver(; m=15)(::DFTK.var"#anderson#826"{DFTK.var"#anderson#825#827"{Base.Pairs{Symbol, Int64, Nothing, @NamedTuple{m::Int64}}}}) (generic function with 1 method)All keyword arguments are passed through to
DFTK.AndersonAcceleration.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiffparameter of theAdaptiveDiagtolalgorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBandsalgorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)AdaptiveBands(4, 7, 1.0e-6, 0.01)Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptiveinstead ofself_consistent_field:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668719661 -11.100308396743962 … -8.28984577241394 -11.100308396744023; -11.100308396743962 -9.130057825949226 … -9.130057795897935 -11.100308356760985; … ; -8.28984577241394 -9.130057795897935 … -4.14958992164424 -6.2879561982005985; -11.10030839674402 -11.100308356760987 … -6.287956198200599 -9.111848223579347;;; -11.100308396743964 -9.130057825949226 … -9.130057795897937 -11.100308356760987; -9.130057825949226 -6.903159481983046 … -9.13005782729891 -10.053883826553962; … ; -9.130057795897935 -9.13005782729891 … -5.29435366921545 -7.5473992065230275; -11.100308356760985 -10.053883826553962 … -7.547399206523028 -10.053883826554067;;; -8.289845772414237 -6.307621931517655 … -8.289845781013192 -9.111848193528017; -6.307621931517657 -4.516655665816317 … -7.54739923761286 -7.54739920652326; … ; -8.28984578101319 -7.547399237612859 … -5.7689690835823155 -7.547399237612931; -9.111848193528017 -7.54739920652326 … -7.5473992376129315 -9.111848224929254;;; … ;;; -5.301031718250706 -6.307621955789863 … -2.5497035732767803 -3.849582179388663; -6.307621955789863 -6.9031594952098745 … -3.32906069854706 -4.878419358631535; … ; -2.54970357327678 -3.3290606985470603 … -1.2567984709032078 -1.81419474604181; -3.8495821793886633 -4.878419358631537 … -1.81419474604181 -2.714767335323406;;; -8.28984577241394 -9.130057795897933 … -4.149589921644242 -6.287956198200598; -9.130057795897935 -9.130057827298906 … -5.294353669215449 -7.547399206523027; … ; -4.149589921644242 -5.29435366921545 … -1.9094492399160796 -2.8946123678531133; -6.2879561982005985 -7.547399206523027 … -2.894612367853113 -4.485542759373085;;; -11.100308396744023 -11.100308356760987 … -6.287956198200599 -9.111848223579345; -11.100308356760985 -10.05388382655396 … -7.547399206523029 -10.053883826554067; … ; -6.287956198200598 -7.547399206523029 … -2.894612367853113 -4.485542759373084; -9.111848223579347 -10.053883826554067 … -4.485542759373085 -6.871104500136813])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668719661 -11.100308396743962 … -8.28984577241394 -11.100308396744023; -11.100308396743962 -9.130057825949226 … -9.130057795897935 -11.100308356760985; … ; -8.28984577241394 -9.130057795897935 … -4.14958992164424 -6.2879561982005985; -11.10030839674402 -11.100308356760987 … -6.287956198200599 -9.111848223579347;;; -11.100308396743964 -9.130057825949226 … -9.130057795897937 -11.100308356760987; -9.130057825949226 -6.903159481983046 … -9.13005782729891 -10.053883826553962; … ; -9.130057795897935 -9.13005782729891 … -5.29435366921545 -7.5473992065230275; -11.100308356760985 -10.053883826553962 … -7.547399206523028 -10.053883826554067;;; -8.289845772414237 -6.307621931517655 … -8.289845781013192 -9.111848193528017; -6.307621931517657 -4.516655665816317 … -7.54739923761286 -7.54739920652326; … ; -8.28984578101319 -7.547399237612859 … -5.7689690835823155 -7.547399237612931; -9.111848193528017 -7.54739920652326 … -7.5473992376129315 -9.111848224929254;;; … ;;; -5.301031718250706 -6.307621955789863 … -2.5497035732767803 -3.849582179388663; -6.307621955789863 -6.9031594952098745 … -3.32906069854706 -4.878419358631535; … ; -2.54970357327678 -3.3290606985470603 … -1.2567984709032078 -1.81419474604181; -3.8495821793886633 -4.878419358631537 … -1.81419474604181 -2.714767335323406;;; -8.28984577241394 -9.130057795897933 … -4.149589921644242 -6.287956198200598; -9.130057795897935 -9.130057827298906 … -5.294353669215449 -7.547399206523027; … ; -4.149589921644242 -5.29435366921545 … -1.9094492399160796 -2.8946123678531133; -6.2879561982005985 -7.547399206523027 … -2.894612367853113 -4.485542759373085;;; -11.100308396744023 -11.100308356760987 … -6.287956198200599 -9.111848223579345; -11.100308356760985 -10.05388382655396 … -7.547399206523029 -10.053883826554067; … ; -6.287956198200598 -7.547399206523029 … -2.894612367853113 -4.485542759373084; -9.111848223579347 -10.053883826554067 … -4.485542759373085 -6.871104500136813]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.008443518456793322 + 0.01113204433115088im 0.039588061889659125 + 0.055257694982398im … -0.0004074506315208436 - 0.022853831771216138im 0.010606606381366526 + 0.022973771409758495im; 0.019610584156146044 + 0.010735754003830575im 0.04081465138926833 - 0.01421536469445869im … -0.030087109116742276 + 0.018872442163384087im 0.022230163796374255 + 0.019195895018458777im; … ; 0.044109679470366994 - 0.010080216397426064im 0.024654747746936653 - 0.02875888929170188im … 0.0815114807881725 + 0.019888488468415864im 0.04630506278827984 - 0.03317951704476141im; 0.07298038168694931 - 0.059739002873383226im 0.0030795657137617444 - 0.02201283081987832im … 0.09946026740565718 + 0.001683850195381652im 0.08213838599836716 - 0.01710528946995879im;;; 0.12302992036142484 - 0.010388853736172779im 0.12500954724865113 - 0.06816342989450157im … -0.014174026047400094 + 0.10804835124577733im 0.10051731312541776 + 0.08594296527659531im; 0.0035581889713379097 - 0.035927483273039226im -0.03415013619099608 - 0.11050376493656612im … 0.04079602801183941 + 0.053189261793760725im 0.02986081844636101 - 0.0185695107920203im; … ; 0.050886585862534764 + 0.02293947829647347im 0.05021471048605742 - 0.020281294584175033im … 0.06781147608263599 - 0.03955515628679692im 0.00030067897033576527 - 0.005848924989048092im; 0.0963980449382547 - 0.008419947052928162im 0.08842250186616551 - 0.03641851896352901im … -0.005008778843406704 + 0.0019156823666495303im 0.04736076723472002 + 0.06946578613149967im;;; 0.013086045310446548 - 0.03798040668653222im 0.023419245395695776 - 0.05342099492781893im … 0.11646130766387155 + 0.08716771502570889im 0.09884067322981162 - 0.03818401528609863im; -0.012539333378440466 + 0.05373045959570791im -0.001664577462432995 - 0.022087327247387684im … 0.040301046125278406 - 0.026815215411059586im -0.07020393490650925 + 0.017738835541131315im; … ; 0.10866074385463159 + 0.00845689601233427im 0.054792964839812275 - 0.05791414528698656im … -0.006759525263659209 - 0.01054564150713473im 0.035409454847732544 + 0.07161361527184087im; 0.11220496941362149 - 0.07101379799530924im 0.027062143661017238 - 0.06630007834554807im … 0.01649589421418849 + 0.09762428428269632im 0.14889107813528707 + 0.060169161238764354im;;; … ;;; 0.008897389015496457 - 0.023487167943291608im -0.08491574418984957 + 0.05882328016010808im … 0.005128159947940122 + 0.06586367611738292im 0.09103919648772157 + 0.03953814451647397im; -0.08246550753636321 + 0.059885752867864545im -0.012503466416439086 + 0.13770463149251597im … 0.020882413817279327 - 0.027568935141639293im -0.016496373052382454 - 0.03997822430888326im; … ; 0.005431648599629614 + 0.10717921646752777im 0.025525827314796964 + 0.023284398671641823im … -0.09420470829747618 - 0.024089930948502272im -0.0776366112371564 + 0.08250162957528442im; 0.07491931866994404 + 0.0669065939035882im -0.016848499792340207 - 0.00406219259236457im … -0.09319091280422853 + 0.044997569376031256im 0.007908908994964124 + 0.12437330021574489im;;; -0.07764397080112441 + 0.07035976949379344im -0.016141494884402138 + 0.16528538243566548im … 0.014371179281566095 - 0.038078042707157395im -0.03981831843594609 - 0.03801535950638982im; -0.006432724414078043 + 0.1712913811211483im 0.10110572051834398 + 0.11939210186682528im … -0.05451815218855871 - 0.059582176367131im -0.09548987161516301 + 0.04257992636241238im; … ; 0.02062962391848893 - 0.01243103909975842im -0.043648361865513796 - 0.003476922117719921im … -0.0005962576978488596 + 0.022651647849567594im 0.053916058406951906 + 0.020503097015843068im; -0.04304553432921319 + 0.016671271141092958im -0.06672964174712213 + 0.08438387160464483im … 0.009707075946786044 + 0.0091105600262699im 0.022654391467362645 - 0.01623778677903824im;;; 0.01608842289800179 + 0.06466874855701671im 0.022626965628862156 + 0.07310046590601522im … 0.01593633489570653 - 0.03239818459461552im -0.004683344556215045 + 0.0023289107026992703im; 0.05028074353468955 + 0.05220525692049689im 0.04394279361329073 + 0.0228161187499744im … -0.04866473812087802 - 0.02511199337997959im -0.011252355311268242 + 0.059370558755954435im; … ; -0.04505140243463511 + 0.0034283554178332343im -0.014366752343253526 + 0.03093797946968213im … 0.04239613063746775 - 0.011334722885529017im 0.022746911719414797 - 0.05576604111502876im; 0.06308174399377021 + 0.051184132203861116im 0.028794418431443338 + 0.0534833057723759im … 0.03457947713238984 + 0.02161055236177041im 0.012591665832192147 + 0.014220809624756199im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668719661 -11.100308396743962 … -8.28984577241394 -11.100308396744023; -11.100308396743962 -9.130057825949226 … -9.130057795897935 -11.100308356760985; … ; -8.28984577241394 -9.130057795897935 … -4.14958992164424 -6.2879561982005985; -11.10030839674402 -11.100308356760987 … -6.287956198200599 -9.111848223579347;;; -11.100308396743964 -9.130057825949226 … -9.130057795897937 -11.100308356760987; -9.130057825949226 -6.903159481983046 … -9.13005782729891 -10.053883826553962; … ; -9.130057795897935 -9.13005782729891 … -5.29435366921545 -7.5473992065230275; -11.100308356760985 -10.053883826553962 … -7.547399206523028 -10.053883826554067;;; -8.289845772414237 -6.307621931517655 … -8.289845781013192 -9.111848193528017; -6.307621931517657 -4.516655665816317 … -7.54739923761286 -7.54739920652326; … ; -8.28984578101319 -7.547399237612859 … -5.7689690835823155 -7.547399237612931; -9.111848193528017 -7.54739920652326 … -7.5473992376129315 -9.111848224929254;;; … ;;; -5.301031718250706 -6.307621955789863 … -2.5497035732767803 -3.849582179388663; -6.307621955789863 -6.9031594952098745 … -3.32906069854706 -4.878419358631535; … ; -2.54970357327678 -3.3290606985470603 … -1.2567984709032078 -1.81419474604181; -3.8495821793886633 -4.878419358631537 … -1.81419474604181 -2.714767335323406;;; -8.28984577241394 -9.130057795897933 … -4.149589921644242 -6.287956198200598; -9.130057795897935 -9.130057827298906 … -5.294353669215449 -7.547399206523027; … ; -4.149589921644242 -5.29435366921545 … -1.9094492399160796 -2.8946123678531133; -6.2879561982005985 -7.547399206523027 … -2.894612367853113 -4.485542759373085;;; -11.100308396744023 -11.100308356760987 … -6.287956198200599 -9.111848223579345; -11.100308356760985 -10.05388382655396 … -7.547399206523029 -10.053883826554067; … ; -6.287956198200598 -7.547399206523029 … -2.894612367853113 -4.485542759373084; -9.111848223579347 -10.053883826554067 … -4.485542759373085 -6.871104500136813])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668719661 -11.100308396743962 … -8.28984577241394 -11.100308396744023; -11.100308396743962 -9.130057825949226 … -9.130057795897935 -11.100308356760985; … ; -8.28984577241394 -9.130057795897935 … -4.14958992164424 -6.2879561982005985; -11.10030839674402 -11.100308356760987 … -6.287956198200599 -9.111848223579347;;; -11.100308396743964 -9.130057825949226 … -9.130057795897937 -11.100308356760987; -9.130057825949226 -6.903159481983046 … -9.13005782729891 -10.053883826553962; … ; -9.130057795897935 -9.13005782729891 … -5.29435366921545 -7.5473992065230275; -11.100308356760985 -10.053883826553962 … -7.547399206523028 -10.053883826554067;;; -8.289845772414237 -6.307621931517655 … -8.289845781013192 -9.111848193528017; -6.307621931517657 -4.516655665816317 … -7.54739923761286 -7.54739920652326; … ; -8.28984578101319 -7.547399237612859 … -5.7689690835823155 -7.547399237612931; -9.111848193528017 -7.54739920652326 … -7.5473992376129315 -9.111848224929254;;; … ;;; -5.301031718250706 -6.307621955789863 … -2.5497035732767803 -3.849582179388663; -6.307621955789863 -6.9031594952098745 … -3.32906069854706 -4.878419358631535; … ; -2.54970357327678 -3.3290606985470603 … -1.2567984709032078 -1.81419474604181; -3.8495821793886633 -4.878419358631537 … -1.81419474604181 -2.714767335323406;;; -8.28984577241394 -9.130057795897933 … -4.149589921644242 -6.287956198200598; -9.130057795897935 -9.130057827298906 … -5.294353669215449 -7.547399206523027; … ; -4.149589921644242 -5.29435366921545 … -1.9094492399160796 -2.8946123678531133; -6.2879561982005985 -7.547399206523027 … -2.894612367853113 -4.485542759373085;;; -11.100308396744023 -11.100308356760987 … -6.287956198200599 -9.111848223579345; -11.100308356760985 -10.05388382655396 … -7.547399206523029 -10.053883826554067; … ; -6.287956198200598 -7.547399206523029 … -2.894612367853113 -4.485542759373084; -9.111848223579347 -10.053883826554067 … -4.485542759373085 -6.871104500136813]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.008443518456793322 + 0.01113204433115088im 0.039588061889659125 + 0.055257694982398im … -0.0004074506315208436 - 0.022853831771216138im 0.010606606381366526 + 0.022973771409758495im; 0.019610584156146044 + 0.010735754003830575im 0.04081465138926833 - 0.01421536469445869im … -0.030087109116742276 + 0.018872442163384087im 0.022230163796374255 + 0.019195895018458777im; … ; 0.044109679470366994 - 0.010080216397426064im 0.024654747746936653 - 0.02875888929170188im … 0.0815114807881725 + 0.019888488468415864im 0.04630506278827984 - 0.03317951704476141im; 0.07298038168694931 - 0.059739002873383226im 0.0030795657137617444 - 0.02201283081987832im … 0.09946026740565718 + 0.001683850195381652im 0.08213838599836716 - 0.01710528946995879im;;; 0.12302992036142484 - 0.010388853736172779im 0.12500954724865113 - 0.06816342989450157im … -0.014174026047400094 + 0.10804835124577733im 0.10051731312541776 + 0.08594296527659531im; 0.0035581889713379097 - 0.035927483273039226im -0.03415013619099608 - 0.11050376493656612im … 0.04079602801183941 + 0.053189261793760725im 0.02986081844636101 - 0.0185695107920203im; … ; 0.050886585862534764 + 0.02293947829647347im 0.05021471048605742 - 0.020281294584175033im … 0.06781147608263599 - 0.03955515628679692im 0.00030067897033576527 - 0.005848924989048092im; 0.0963980449382547 - 0.008419947052928162im 0.08842250186616551 - 0.03641851896352901im … -0.005008778843406704 + 0.0019156823666495303im 0.04736076723472002 + 0.06946578613149967im;;; 0.013086045310446548 - 0.03798040668653222im 0.023419245395695776 - 0.05342099492781893im … 0.11646130766387155 + 0.08716771502570889im 0.09884067322981162 - 0.03818401528609863im; -0.012539333378440466 + 0.05373045959570791im -0.001664577462432995 - 0.022087327247387684im … 0.040301046125278406 - 0.026815215411059586im -0.07020393490650925 + 0.017738835541131315im; … ; 0.10866074385463159 + 0.00845689601233427im 0.054792964839812275 - 0.05791414528698656im … -0.006759525263659209 - 0.01054564150713473im 0.035409454847732544 + 0.07161361527184087im; 0.11220496941362149 - 0.07101379799530924im 0.027062143661017238 - 0.06630007834554807im … 0.01649589421418849 + 0.09762428428269632im 0.14889107813528707 + 0.060169161238764354im;;; … ;;; 0.008897389015496457 - 0.023487167943291608im -0.08491574418984957 + 0.05882328016010808im … 0.005128159947940122 + 0.06586367611738292im 0.09103919648772157 + 0.03953814451647397im; -0.08246550753636321 + 0.059885752867864545im -0.012503466416439086 + 0.13770463149251597im … 0.020882413817279327 - 0.027568935141639293im -0.016496373052382454 - 0.03997822430888326im; … ; 0.005431648599629614 + 0.10717921646752777im 0.025525827314796964 + 0.023284398671641823im … -0.09420470829747618 - 0.024089930948502272im -0.0776366112371564 + 0.08250162957528442im; 0.07491931866994404 + 0.0669065939035882im -0.016848499792340207 - 0.00406219259236457im … -0.09319091280422853 + 0.044997569376031256im 0.007908908994964124 + 0.12437330021574489im;;; -0.07764397080112441 + 0.07035976949379344im -0.016141494884402138 + 0.16528538243566548im … 0.014371179281566095 - 0.038078042707157395im -0.03981831843594609 - 0.03801535950638982im; -0.006432724414078043 + 0.1712913811211483im 0.10110572051834398 + 0.11939210186682528im … -0.05451815218855871 - 0.059582176367131im -0.09548987161516301 + 0.04257992636241238im; … ; 0.02062962391848893 - 0.01243103909975842im -0.043648361865513796 - 0.003476922117719921im … -0.0005962576978488596 + 0.022651647849567594im 0.053916058406951906 + 0.020503097015843068im; -0.04304553432921319 + 0.016671271141092958im -0.06672964174712213 + 0.08438387160464483im … 0.009707075946786044 + 0.0091105600262699im 0.022654391467362645 - 0.01623778677903824im;;; 0.01608842289800179 + 0.06466874855701671im 0.022626965628862156 + 0.07310046590601522im … 0.01593633489570653 - 0.03239818459461552im -0.004683344556215045 + 0.0023289107026992703im; 0.05028074353468955 + 0.05220525692049689im 0.04394279361329073 + 0.0228161187499744im … -0.04866473812087802 - 0.02511199337997959im -0.011252355311268242 + 0.059370558755954435im; … ; -0.04505140243463511 + 0.0034283554178332343im -0.014366752343253526 + 0.03093797946968213im … 0.04239613063746775 - 0.011334722885529017im 0.022746911719414797 - 0.05576604111502876im; 0.06308174399377021 + 0.051184132203861116im 0.028794418431443338 + 0.0534833057723759im … 0.03457947713238984 + 0.02161055236177041im 0.012591665832192147 + 0.014220809624756199im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668719661 -11.100308396743962 … -8.28984577241394 -11.100308396744023; -11.100308396743962 -9.130057825949226 … -9.130057795897935 -11.100308356760985; … ; -8.28984577241394 -9.130057795897935 … -4.14958992164424 -6.2879561982005985; -11.10030839674402 -11.100308356760987 … -6.287956198200599 -9.111848223579347;;; -11.100308396743964 -9.130057825949226 … -9.130057795897937 -11.100308356760987; -9.130057825949226 -6.903159481983046 … -9.13005782729891 -10.053883826553962; … ; -9.130057795897935 -9.13005782729891 … -5.29435366921545 -7.5473992065230275; -11.100308356760985 -10.053883826553962 … -7.547399206523028 -10.053883826554067;;; -8.289845772414237 -6.307621931517655 … -8.289845781013192 -9.111848193528017; -6.307621931517657 -4.516655665816317 … -7.54739923761286 -7.54739920652326; … ; -8.28984578101319 -7.547399237612859 … -5.7689690835823155 -7.547399237612931; -9.111848193528017 -7.54739920652326 … -7.5473992376129315 -9.111848224929254;;; … ;;; -5.301031718250706 -6.307621955789863 … -2.5497035732767803 -3.849582179388663; -6.307621955789863 -6.9031594952098745 … -3.32906069854706 -4.878419358631535; … ; -2.54970357327678 -3.3290606985470603 … -1.2567984709032078 -1.81419474604181; -3.8495821793886633 -4.878419358631537 … -1.81419474604181 -2.714767335323406;;; -8.28984577241394 -9.130057795897933 … -4.149589921644242 -6.287956198200598; -9.130057795897935 -9.130057827298906 … -5.294353669215449 -7.547399206523027; … ; -4.149589921644242 -5.29435366921545 … -1.9094492399160796 -2.8946123678531133; -6.2879561982005985 -7.547399206523027 … -2.894612367853113 -4.485542759373085;;; -11.100308396744023 -11.100308356760987 … -6.287956198200599 -9.111848223579345; -11.100308356760985 -10.05388382655396 … -7.547399206523029 -10.053883826554067; … ; -6.287956198200598 -7.547399206523029 … -2.894612367853113 -4.485542759373084; -9.111848223579347 -10.053883826554067 … -4.485542759373085 -6.871104500136813])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668719661 -11.100308396743962 … -8.28984577241394 -11.100308396744023; -11.100308396743962 -9.130057825949226 … -9.130057795897935 -11.100308356760985; … ; -8.28984577241394 -9.130057795897935 … -4.14958992164424 -6.2879561982005985; -11.10030839674402 -11.100308356760987 … -6.287956198200599 -9.111848223579347;;; -11.100308396743964 -9.130057825949226 … -9.130057795897937 -11.100308356760987; -9.130057825949226 -6.903159481983046 … -9.13005782729891 -10.053883826553962; … ; -9.130057795897935 -9.13005782729891 … -5.29435366921545 -7.5473992065230275; -11.100308356760985 -10.053883826553962 … -7.547399206523028 -10.053883826554067;;; -8.289845772414237 -6.307621931517655 … -8.289845781013192 -9.111848193528017; -6.307621931517657 -4.516655665816317 … -7.54739923761286 -7.54739920652326; … ; -8.28984578101319 -7.547399237612859 … -5.7689690835823155 -7.547399237612931; -9.111848193528017 -7.54739920652326 … -7.5473992376129315 -9.111848224929254;;; … ;;; -5.301031718250706 -6.307621955789863 … -2.5497035732767803 -3.849582179388663; -6.307621955789863 -6.9031594952098745 … -3.32906069854706 -4.878419358631535; … ; -2.54970357327678 -3.3290606985470603 … -1.2567984709032078 -1.81419474604181; -3.8495821793886633 -4.878419358631537 … -1.81419474604181 -2.714767335323406;;; -8.28984577241394 -9.130057795897933 … -4.149589921644242 -6.287956198200598; -9.130057795897935 -9.130057827298906 … -5.294353669215449 -7.547399206523027; … ; -4.149589921644242 -5.29435366921545 … -1.9094492399160796 -2.8946123678531133; -6.2879561982005985 -7.547399206523027 … -2.894612367853113 -4.485542759373085;;; -11.100308396744023 -11.100308356760987 … -6.287956198200599 -9.111848223579345; -11.100308356760985 -10.05388382655396 … -7.547399206523029 -10.053883826554067; … ; -6.287956198200598 -7.547399206523029 … -2.894612367853113 -4.485542759373084; -9.111848223579347 -10.053883826554067 … -4.485542759373085 -6.871104500136813]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.008443518456793322 + 0.01113204433115088im 0.039588061889659125 + 0.055257694982398im … -0.0004074506315208436 - 0.022853831771216138im 0.010606606381366526 + 0.022973771409758495im; 0.019610584156146044 + 0.010735754003830575im 0.04081465138926833 - 0.01421536469445869im … -0.030087109116742276 + 0.018872442163384087im 0.022230163796374255 + 0.019195895018458777im; … ; 0.044109679470366994 - 0.010080216397426064im 0.024654747746936653 - 0.02875888929170188im … 0.0815114807881725 + 0.019888488468415864im 0.04630506278827984 - 0.03317951704476141im; 0.07298038168694931 - 0.059739002873383226im 0.0030795657137617444 - 0.02201283081987832im … 0.09946026740565718 + 0.001683850195381652im 0.08213838599836716 - 0.01710528946995879im;;; 0.12302992036142484 - 0.010388853736172779im 0.12500954724865113 - 0.06816342989450157im … -0.014174026047400094 + 0.10804835124577733im 0.10051731312541776 + 0.08594296527659531im; 0.0035581889713379097 - 0.035927483273039226im -0.03415013619099608 - 0.11050376493656612im … 0.04079602801183941 + 0.053189261793760725im 0.02986081844636101 - 0.0185695107920203im; … ; 0.050886585862534764 + 0.02293947829647347im 0.05021471048605742 - 0.020281294584175033im … 0.06781147608263599 - 0.03955515628679692im 0.00030067897033576527 - 0.005848924989048092im; 0.0963980449382547 - 0.008419947052928162im 0.08842250186616551 - 0.03641851896352901im … -0.005008778843406704 + 0.0019156823666495303im 0.04736076723472002 + 0.06946578613149967im;;; 0.013086045310446548 - 0.03798040668653222im 0.023419245395695776 - 0.05342099492781893im … 0.11646130766387155 + 0.08716771502570889im 0.09884067322981162 - 0.03818401528609863im; -0.012539333378440466 + 0.05373045959570791im -0.001664577462432995 - 0.022087327247387684im … 0.040301046125278406 - 0.026815215411059586im -0.07020393490650925 + 0.017738835541131315im; … ; 0.10866074385463159 + 0.00845689601233427im 0.054792964839812275 - 0.05791414528698656im … -0.006759525263659209 - 0.01054564150713473im 0.035409454847732544 + 0.07161361527184087im; 0.11220496941362149 - 0.07101379799530924im 0.027062143661017238 - 0.06630007834554807im … 0.01649589421418849 + 0.09762428428269632im 0.14889107813528707 + 0.060169161238764354im;;; … ;;; 0.008897389015496457 - 0.023487167943291608im -0.08491574418984957 + 0.05882328016010808im … 0.005128159947940122 + 0.06586367611738292im 0.09103919648772157 + 0.03953814451647397im; -0.08246550753636321 + 0.059885752867864545im -0.012503466416439086 + 0.13770463149251597im … 0.020882413817279327 - 0.027568935141639293im -0.016496373052382454 - 0.03997822430888326im; … ; 0.005431648599629614 + 0.10717921646752777im 0.025525827314796964 + 0.023284398671641823im … -0.09420470829747618 - 0.024089930948502272im -0.0776366112371564 + 0.08250162957528442im; 0.07491931866994404 + 0.0669065939035882im -0.016848499792340207 - 0.00406219259236457im … -0.09319091280422853 + 0.044997569376031256im 0.007908908994964124 + 0.12437330021574489im;;; -0.07764397080112441 + 0.07035976949379344im -0.016141494884402138 + 0.16528538243566548im … 0.014371179281566095 - 0.038078042707157395im -0.03981831843594609 - 0.03801535950638982im; -0.006432724414078043 + 0.1712913811211483im 0.10110572051834398 + 0.11939210186682528im … -0.05451815218855871 - 0.059582176367131im -0.09548987161516301 + 0.04257992636241238im; … ; 0.02062962391848893 - 0.01243103909975842im -0.043648361865513796 - 0.003476922117719921im … -0.0005962576978488596 + 0.022651647849567594im 0.053916058406951906 + 0.020503097015843068im; -0.04304553432921319 + 0.016671271141092958im -0.06672964174712213 + 0.08438387160464483im … 0.009707075946786044 + 0.0091105600262699im 0.022654391467362645 - 0.01623778677903824im;;; 0.01608842289800179 + 0.06466874855701671im 0.022626965628862156 + 0.07310046590601522im … 0.01593633489570653 - 0.03239818459461552im -0.004683344556215045 + 0.0023289107026992703im; 0.05028074353468955 + 0.05220525692049689im 0.04394279361329073 + 0.0228161187499744im … -0.04866473812087802 - 0.02511199337997959im -0.011252355311268242 + 0.059370558755954435im; … ; -0.04505140243463511 + 0.0034283554178332343im -0.014366752343253526 + 0.03093797946968213im … 0.04239613063746775 - 0.011334722885529017im 0.022746911719414797 - 0.05576604111502876im; 0.06308174399377021 + 0.051184132203861116im 0.028794418431443338 + 0.0534833057723759im … 0.03457947713238984 + 0.02161055236177041im 0.012591665832192147 + 0.014220809624756199im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668719661 -11.100308396743962 … -8.28984577241394 -11.100308396744023; -11.100308396743962 -9.130057825949226 … -9.130057795897935 -11.100308356760985; … ; -8.28984577241394 -9.130057795897935 … -4.14958992164424 -6.2879561982005985; -11.10030839674402 -11.100308356760987 … -6.287956198200599 -9.111848223579347;;; -11.100308396743964 -9.130057825949226 … -9.130057795897937 -11.100308356760987; -9.130057825949226 -6.903159481983046 … -9.13005782729891 -10.053883826553962; … ; -9.130057795897935 -9.13005782729891 … -5.29435366921545 -7.5473992065230275; -11.100308356760985 -10.053883826553962 … -7.547399206523028 -10.053883826554067;;; -8.289845772414237 -6.307621931517655 … -8.289845781013192 -9.111848193528017; -6.307621931517657 -4.516655665816317 … -7.54739923761286 -7.54739920652326; … ; -8.28984578101319 -7.547399237612859 … -5.7689690835823155 -7.547399237612931; -9.111848193528017 -7.54739920652326 … -7.5473992376129315 -9.111848224929254;;; … ;;; -5.301031718250706 -6.307621955789863 … -2.5497035732767803 -3.849582179388663; -6.307621955789863 -6.9031594952098745 … -3.32906069854706 -4.878419358631535; … ; -2.54970357327678 -3.3290606985470603 … -1.2567984709032078 -1.81419474604181; -3.8495821793886633 -4.878419358631537 … -1.81419474604181 -2.714767335323406;;; -8.28984577241394 -9.130057795897933 … -4.149589921644242 -6.287956198200598; -9.130057795897935 -9.130057827298906 … -5.294353669215449 -7.547399206523027; … ; -4.149589921644242 -5.29435366921545 … -1.9094492399160796 -2.8946123678531133; -6.2879561982005985 -7.547399206523027 … -2.894612367853113 -4.485542759373085;;; -11.100308396744023 -11.100308356760987 … -6.287956198200599 -9.111848223579345; -11.100308356760985 -10.05388382655396 … -7.547399206523029 -10.053883826554067; … ; -6.287956198200598 -7.547399206523029 … -2.894612367853113 -4.485542759373084; -9.111848223579347 -10.053883826554067 … -4.485542759373085 -6.871104500136813])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668719661 -11.100308396743962 … -8.28984577241394 -11.100308396744023; -11.100308396743962 -9.130057825949226 … -9.130057795897935 -11.100308356760985; … ; -8.28984577241394 -9.130057795897935 … -4.14958992164424 -6.2879561982005985; -11.10030839674402 -11.100308356760987 … -6.287956198200599 -9.111848223579347;;; -11.100308396743964 -9.130057825949226 … -9.130057795897937 -11.100308356760987; -9.130057825949226 -6.903159481983046 … -9.13005782729891 -10.053883826553962; … ; -9.130057795897935 -9.13005782729891 … -5.29435366921545 -7.5473992065230275; -11.100308356760985 -10.053883826553962 … -7.547399206523028 -10.053883826554067;;; -8.289845772414237 -6.307621931517655 … -8.289845781013192 -9.111848193528017; -6.307621931517657 -4.516655665816317 … -7.54739923761286 -7.54739920652326; … ; -8.28984578101319 -7.547399237612859 … -5.7689690835823155 -7.547399237612931; -9.111848193528017 -7.54739920652326 … -7.5473992376129315 -9.111848224929254;;; … ;;; -5.301031718250706 -6.307621955789863 … -2.5497035732767803 -3.849582179388663; -6.307621955789863 -6.9031594952098745 … -3.32906069854706 -4.878419358631535; … ; -2.54970357327678 -3.3290606985470603 … -1.2567984709032078 -1.81419474604181; -3.8495821793886633 -4.878419358631537 … -1.81419474604181 -2.714767335323406;;; -8.28984577241394 -9.130057795897933 … -4.149589921644242 -6.287956198200598; -9.130057795897935 -9.130057827298906 … -5.294353669215449 -7.547399206523027; … ; -4.149589921644242 -5.29435366921545 … -1.9094492399160796 -2.8946123678531133; -6.2879561982005985 -7.547399206523027 … -2.894612367853113 -4.485542759373085;;; -11.100308396744023 -11.100308356760987 … -6.287956198200599 -9.111848223579345; -11.100308356760985 -10.05388382655396 … -7.547399206523029 -10.053883826554067; … ; -6.287956198200598 -7.547399206523029 … -2.894612367853113 -4.485542759373084; -9.111848223579347 -10.053883826554067 … -4.485542759373085 -6.871104500136813]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.008443518456793322 + 0.01113204433115088im 0.039588061889659125 + 0.055257694982398im … -0.0004074506315208436 - 0.022853831771216138im 0.010606606381366526 + 0.022973771409758495im; 0.019610584156146044 + 0.010735754003830575im 0.04081465138926833 - 0.01421536469445869im … -0.030087109116742276 + 0.018872442163384087im 0.022230163796374255 + 0.019195895018458777im; … ; 0.044109679470366994 - 0.010080216397426064im 0.024654747746936653 - 0.02875888929170188im … 0.0815114807881725 + 0.019888488468415864im 0.04630506278827984 - 0.03317951704476141im; 0.07298038168694931 - 0.059739002873383226im 0.0030795657137617444 - 0.02201283081987832im … 0.09946026740565718 + 0.001683850195381652im 0.08213838599836716 - 0.01710528946995879im;;; 0.12302992036142484 - 0.010388853736172779im 0.12500954724865113 - 0.06816342989450157im … -0.014174026047400094 + 0.10804835124577733im 0.10051731312541776 + 0.08594296527659531im; 0.0035581889713379097 - 0.035927483273039226im -0.03415013619099608 - 0.11050376493656612im … 0.04079602801183941 + 0.053189261793760725im 0.02986081844636101 - 0.0185695107920203im; … ; 0.050886585862534764 + 0.02293947829647347im 0.05021471048605742 - 0.020281294584175033im … 0.06781147608263599 - 0.03955515628679692im 0.00030067897033576527 - 0.005848924989048092im; 0.0963980449382547 - 0.008419947052928162im 0.08842250186616551 - 0.03641851896352901im … -0.005008778843406704 + 0.0019156823666495303im 0.04736076723472002 + 0.06946578613149967im;;; 0.013086045310446548 - 0.03798040668653222im 0.023419245395695776 - 0.05342099492781893im … 0.11646130766387155 + 0.08716771502570889im 0.09884067322981162 - 0.03818401528609863im; -0.012539333378440466 + 0.05373045959570791im -0.001664577462432995 - 0.022087327247387684im … 0.040301046125278406 - 0.026815215411059586im -0.07020393490650925 + 0.017738835541131315im; … ; 0.10866074385463159 + 0.00845689601233427im 0.054792964839812275 - 0.05791414528698656im … -0.006759525263659209 - 0.01054564150713473im 0.035409454847732544 + 0.07161361527184087im; 0.11220496941362149 - 0.07101379799530924im 0.027062143661017238 - 0.06630007834554807im … 0.01649589421418849 + 0.09762428428269632im 0.14889107813528707 + 0.060169161238764354im;;; … ;;; 0.008897389015496457 - 0.023487167943291608im -0.08491574418984957 + 0.05882328016010808im … 0.005128159947940122 + 0.06586367611738292im 0.09103919648772157 + 0.03953814451647397im; -0.08246550753636321 + 0.059885752867864545im -0.012503466416439086 + 0.13770463149251597im … 0.020882413817279327 - 0.027568935141639293im -0.016496373052382454 - 0.03997822430888326im; … ; 0.005431648599629614 + 0.10717921646752777im 0.025525827314796964 + 0.023284398671641823im … -0.09420470829747618 - 0.024089930948502272im -0.0776366112371564 + 0.08250162957528442im; 0.07491931866994404 + 0.0669065939035882im -0.016848499792340207 - 0.00406219259236457im … -0.09319091280422853 + 0.044997569376031256im 0.007908908994964124 + 0.12437330021574489im;;; -0.07764397080112441 + 0.07035976949379344im -0.016141494884402138 + 0.16528538243566548im … 0.014371179281566095 - 0.038078042707157395im -0.03981831843594609 - 0.03801535950638982im; -0.006432724414078043 + 0.1712913811211483im 0.10110572051834398 + 0.11939210186682528im … -0.05451815218855871 - 0.059582176367131im -0.09548987161516301 + 0.04257992636241238im; … ; 0.02062962391848893 - 0.01243103909975842im -0.043648361865513796 - 0.003476922117719921im … -0.0005962576978488596 + 0.022651647849567594im 0.053916058406951906 + 0.020503097015843068im; -0.04304553432921319 + 0.016671271141092958im -0.06672964174712213 + 0.08438387160464483im … 0.009707075946786044 + 0.0091105600262699im 0.022654391467362645 - 0.01623778677903824im;;; 0.01608842289800179 + 0.06466874855701671im 0.022626965628862156 + 0.07310046590601522im … 0.01593633489570653 - 0.03239818459461552im -0.004683344556215045 + 0.0023289107026992703im; 0.05028074353468955 + 0.05220525692049689im 0.04394279361329073 + 0.0228161187499744im … -0.04866473812087802 - 0.02511199337997959im -0.011252355311268242 + 0.059370558755954435im; … ; -0.04505140243463511 + 0.0034283554178332343im -0.014366752343253526 + 0.03093797946968213im … 0.04239613063746775 - 0.011334722885529017im 0.022746911719414797 - 0.05576604111502876im; 0.06308174399377021 + 0.051184132203861116im 0.028794418431443338 + 0.0534833057723759im … 0.03457947713238984 + 0.02161055236177041im 0.012591665832192147 + 0.014220809624756199im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488506), converged = true, ρ = [7.589784540456442e-5 0.001126271272850764 … 0.006697037550118327 0.0011262712728507792; 0.0011262712728507488 0.00527433445739604 … 0.005274334457396084 0.0011262712728507488; … ; 0.00669703755011832 0.0052743344573960805 … 0.023244754191024595 0.012258986825273849; 0.0011262712728507605 0.0011262712728507555 … 0.012258986825273857 0.0037700086299542624;;; 0.0011262712728507616 0.0052743344573960745 … 0.005274334457396099 0.0011262712728507755; 0.00527433445739606 0.014620065304660371 … 0.005274334457396086 0.0025880808748886533; … ; 0.005274334457396094 0.0052743344573960875 … 0.01810768664612677 0.008922003044778894; 0.0011262712728507568 0.0025880808748886637 … 0.008922003044778902 0.00258808087488868;;; 0.0066970375501182915 0.01641210910154085 … 0.006697037550118324 0.0037700086299542576; 0.016412109101540832 0.031277839315692016 … 0.008922003044778866 0.008922003044778847; … ; 0.006697037550118313 0.008922003044778862 … 0.016476756359436923 0.008922003044778892; 0.0037700086299542416 0.008922003044778852 … 0.0089220030447789 0.0037700086299542615;;; … ;;; 0.019853839853339886 0.016412109101540864 … 0.03715667363558588 0.02719080068650389; 0.016412109101540846 0.014620065304660385 … 0.032301272126340874 0.022322100931641154; … ; 0.03715667363558586 0.03230127212634087 … 0.046296980701467906 0.042636582731399184; 0.027190800686503876 0.022322100931641154 … 0.042636582731399184 0.03477222914192495;;; 0.0066970375501182984 0.005274334457396074 … 0.02324475419102458 0.01225898682527383; 0.00527433445739606 0.005274334457396043 … 0.018107686646126737 0.008922003044778857; … ; 0.023244754191024574 0.018107686646126733 … 0.04037111033554925 0.03149160381134547; 0.012258986825273814 0.008922003044778859 … 0.03149160381134547 0.020047163432737238;;; 0.001126271272850763 0.0011262712728507649 … 0.012258986825273838 0.0037700086299542654; 0.0011262712728507497 0.0025880808748886346 … 0.008922003044778871 0.0025880808748886567; … ; 0.012258986825273837 0.008922003044778871 … 0.03149160381134547 0.02004716343273725; 0.003770008629954247 0.0025880808748886663 … 0.02004716343273726 0.008952603496832457;;;;], eigenvalues = [[-0.17836835653868655, 0.26249194499231265, 0.262491944992313, 0.26249194499231343, 0.3546921481682136, 0.3546921481682139, 0.3546921481690748], [-0.12755037617850273, 0.06475320594749333, 0.22545166517491713, 0.22545166517491771, 0.32197764961210174, 0.3892227690853209, 0.38922276908532155], [-0.10818729216439, 0.07755003473521138, 0.1727832801153373, 0.17278328011533753, 0.2843518536202964, 0.3305476484334951, 0.5267232426396676], [-0.05777325374359046, 0.01272478220628111, 0.09766073750176137, 0.18417825333038323, 0.315228417960367, 0.47203121823941413, 0.49791351758739594]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993063049, n_iter = 10, ψ = Matrix{ComplexF64}[[0.8052643559632888 - 0.5032424904980801im -1.2216537847805977e-14 - 4.4914528245905514e-14im … -5.41916405917418e-13 - 1.5392764523808123e-12im -5.516661933430283e-9 - 1.5033591579221726e-8im; 0.022345021583320978 - 0.09680959251414535im -0.09546407015117872 - 0.2023117350463961im … 0.013555650529370121 + 0.07075038706800242im -0.18485163782745098 + 0.303056776337004im; … ; -0.00997108906128648 + 0.006231339627858309im 0.009160946963360683 + 0.004914369756408503im … 0.019919762713606466 - 0.038880725187948655im 0.05413974779247735 - 0.058421084625439205im; 0.02234502158334567 - 0.0968095925141596im 0.1861800344539591 + 0.17494237959588868im … -0.09891515293729403 - 0.27803666021857676im -0.21024773223130105 - 0.36462041003964085im], [0.020528165427071015 + 0.9210087898419774im -0.11988007150978755 - 0.1638606118974369im … -6.801526133515612e-12 - 8.213680538368107e-12im 4.050519565238702e-12 - 6.3601792956122815e-12im; 0.045205032749524726 + 0.043233837917013324im 0.008903024477880423 + 0.0013799918394530577im … -3.5844135598026384e-11 - 5.374936642903557e-11im 2.3283005256694066e-11 - 6.896748672123137e-11im; … ; -0.00011012987329888252 - 0.004941044619236958im 0.04991605056836495 + 0.06822880973140627im … -0.049958982937328936 - 0.07809730602056672im 0.03120555218156936 - 0.03924255832237956im; 0.0844913426034181 + 0.08080704269692943im -0.09893857884866598 - 0.015335735822869253im … -0.4003982066127183 - 0.08798110645231841im -0.02512959559944134 - 0.22027264215151446im], [0.7407639304796012 + 0.5548697700078418im -5.652572204658668e-14 - 6.089158893732292e-14im … -3.5817976768099166e-12 + 2.0916031181706074e-11im 4.1161818029045127e-10 - 6.129932986751311e-10im; 0.06783901477691584 - 0.009733365761066199im 0.05219248230604967 + 0.0006562253460373555im … 0.024241481672758875 - 0.00929043676201675im 0.0030377991052242983 - 0.001970714017505945im; … ; -0.008479764250504467 - 0.006351773683607687im -2.667131044589268e-13 - 2.408304083053401e-13im … 4.152225249250422e-10 + 3.2133854435977294e-10im 0.036274250448603614 - 0.03973597444497804im; 0.15861685617796178 - 0.022757934827397793im -0.29321823669477726 - 0.003686684946160278im … 0.3474521365589666 - 0.1331594382708963im -0.006030476152445283 - 0.15554778500466881im], [0.008731508980492136 + 0.7992766289493706im -2.3874816849273982e-14 - 6.016575289789641e-15im … 0.14198329952836303 - 0.11328695364635454im 3.231684039729236e-6 - 2.1652321650677463e-6im; 0.28009542366833956 + 0.27404188140226327im 0.17139953393777668 - 0.5966401062924871im … -0.02032928787018428 + 0.18085344768623277im 5.819635359815813e-7 + 1.5272934203199843e-6im; … ; -0.00014475060694500323 - 0.013250376019233224im -0.00022210701110326198 + 0.00012297400765750303im … -0.010199810817171017 + 0.008139164126321518im -0.0015156306441502724 + 0.04607331295966855im; 0.047956201353615044 + 0.04691975138954518im -0.0014670463186067621 + 0.005106773930134393im … -0.016014688632703725 + 0.14248448395322802im 0.3220709345867987 + 0.34399646956376556im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653868655, 0.26249194499231265, 0.262491944992313, 0.26249194499231343, 0.3546921481682136, 0.3546921481682139, 0.3546921481690748], [-0.12755037617850273, 0.06475320594749333, 0.22545166517491713, 0.22545166517491771, 0.32197764961210174, 0.3892227690853209, 0.38922276908532155], [-0.10818729216439, 0.07755003473521138, 0.1727832801153373, 0.17278328011533753, 0.2843518536202964, 0.3305476484334951, 0.5267232426396676], [-0.05777325374359046, 0.01272478220628111, 0.09766073750176137, 0.18417825333038323, 0.315228417960367, 0.47203121823941413, 0.49791351758739594]], X = [[0.8052643559632888 - 0.5032424904980801im -1.2216537847805977e-14 - 4.4914528245905514e-14im … -5.41916405917418e-13 - 1.5392764523808123e-12im -5.516661933430283e-9 - 1.5033591579221726e-8im; 0.022345021583320978 - 0.09680959251414535im -0.09546407015117872 - 0.2023117350463961im … 0.013555650529370121 + 0.07075038706800242im -0.18485163782745098 + 0.303056776337004im; … ; -0.00997108906128648 + 0.006231339627858309im 0.009160946963360683 + 0.004914369756408503im … 0.019919762713606466 - 0.038880725187948655im 0.05413974779247735 - 0.058421084625439205im; 0.02234502158334567 - 0.0968095925141596im 0.1861800344539591 + 0.17494237959588868im … -0.09891515293729403 - 0.27803666021857676im -0.21024773223130105 - 0.36462041003964085im], [0.020528165427071015 + 0.9210087898419774im -0.11988007150978755 - 0.1638606118974369im … -6.801526133515612e-12 - 8.213680538368107e-12im 4.050519565238702e-12 - 6.3601792956122815e-12im; 0.045205032749524726 + 0.043233837917013324im 0.008903024477880423 + 0.0013799918394530577im … -3.5844135598026384e-11 - 5.374936642903557e-11im 2.3283005256694066e-11 - 6.896748672123137e-11im; … ; -0.00011012987329888252 - 0.004941044619236958im 0.04991605056836495 + 0.06822880973140627im … -0.049958982937328936 - 0.07809730602056672im 0.03120555218156936 - 0.03924255832237956im; 0.0844913426034181 + 0.08080704269692943im -0.09893857884866598 - 0.015335735822869253im … -0.4003982066127183 - 0.08798110645231841im -0.02512959559944134 - 0.22027264215151446im], [0.7407639304796012 + 0.5548697700078418im -5.652572204658668e-14 - 6.089158893732292e-14im … -3.5817976768099166e-12 + 2.0916031181706074e-11im 4.1161818029045127e-10 - 6.129932986751311e-10im; 0.06783901477691584 - 0.009733365761066199im 0.05219248230604967 + 0.0006562253460373555im … 0.024241481672758875 - 0.00929043676201675im 0.0030377991052242983 - 0.001970714017505945im; … ; -0.008479764250504467 - 0.006351773683607687im -2.667131044589268e-13 - 2.408304083053401e-13im … 4.152225249250422e-10 + 3.2133854435977294e-10im 0.036274250448603614 - 0.03973597444497804im; 0.15861685617796178 - 0.022757934827397793im -0.29321823669477726 - 0.003686684946160278im … 0.3474521365589666 - 0.1331594382708963im -0.006030476152445283 - 0.15554778500466881im], [0.008731508980492136 + 0.7992766289493706im -2.3874816849273982e-14 - 6.016575289789641e-15im … 0.14198329952836303 - 0.11328695364635454im 3.231684039729236e-6 - 2.1652321650677463e-6im; 0.28009542366833956 + 0.27404188140226327im 0.17139953393777668 - 0.5966401062924871im … -0.02032928787018428 + 0.18085344768623277im 5.819635359815813e-7 + 1.5272934203199843e-6im; … ; -0.00014475060694500323 - 0.013250376019233224im -0.00022210701110326198 + 0.00012297400765750303im … -0.010199810817171017 + 0.008139164126321518im -0.0015156306441502724 + 0.04607331295966855im; 0.047956201353615044 + 0.04691975138954518im -0.0014670463186067621 + 0.005106773930134393im … -0.016014688632703725 + 0.14248448395322802im 0.3220709345867987 + 0.34399646956376556im]], residual_norms = [[0.0, 0.0, 7.476970571565594e-12, 9.733973905672562e-12, 1.0125505649001879e-10, 6.97673791593633e-11, 6.858563510389361e-7], [3.85740773237161e-12, 7.0289228764567934e-12, 5.651688101375964e-12, 5.994417088223532e-12, 4.100981908110938e-10, 2.1246428942979445e-9, 2.8482245861932456e-9], [4.9414690782670995e-12, 5.3106100063941406e-12, 8.070452199161842e-12, 9.05859836617534e-12, 1.4938709081316068e-10, 3.540847383900676e-9, 4.090348253473726e-7], [0.0, 0.0, 0.0, 6.907389006539863e-12, 1.1548547294490461e-10, 8.216348165820815e-6, 3.387730522759553e-6]], n_iter = [3, 2, 2, 3], converged = 1, n_matvec = 93)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21069105712579914, 0.027593811234154313, 0.002304045372645615, 0.0002570652763626328, 9.342571670590516e-6, 8.960343729117514e-7, 3.149451931311054e-8, 1.6023101043174722e-9, 3.445734980588421e-10, 7.882761779774666e-11], history_Etot = [-7.905264846478361, -7.910544545802146, -7.910593456435062, -7.910594393258682, -7.910594396443637, -7.910594396488445, -7.9105943964885075, -7.9105943964885075, -7.910594396488509, -7.910594396488506], occupation_threshold = 1.0e-6, seed = 0xfd2c35f47fb3e79d, runtime_ns = 0x0000000082b3f565)