Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model
. Values up to1e-2
atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solver
toself_consistent_field
, e.g.solver = scf_anderson_solver(; m=15)
(::DFTK.var"#anderson#781"{DFTK.var"#anderson#780#782"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)
All keyword arguments are passed through to
DFTK.AndersonAcceleration
.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiff
parameter of theAdaptiveDiagtol
algorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBands
algorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
AdaptiveBands(4, 7, 1.0e-6, 0.01)
Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptive
instead ofself_consistent_field
:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.24756966872634 -11.10030839674288 … -8.289845772412898 -11.10030839674294; -11.10030839674288 -9.130057825948253 … -9.13005779589696 -11.100308356759903; … ; -8.289845772412898 -9.130057795896962 … -4.149589921643883 -6.287956198199802; -11.100308396742939 -11.100308356759905 … -6.287956198199803 -9.111848223577795;;; -11.100308396742882 -9.130057825948251 … -9.130057795896963 -11.100308356759905; -9.130057825948253 -6.903159481982707 … -9.130057827297934 -10.053883826552566; … ; -9.130057795896962 -9.130057827297934 … -5.29435366921496 -7.54739920652211; -11.100308356759903 -10.053883826552566 … -7.547399206522111 -10.05388382655267;;; -8.289845772413196 -6.3076219315173105 … -8.28984578101215 -9.111848193526464; -6.307621931517312 -4.51665566581643 … -7.547399237611942 -7.547399206522343; … ; -8.289845781012149 -7.547399237611941 … -5.7689690835817835 -7.547399237612013; -9.111848193526463 -7.547399206522342 … -7.547399237612014 -9.111848224927702;;; … ;;; -5.301031718250391 -6.307621955789518 … -2.5497035732766578 -3.849582179388456; -6.307621955789519 -6.903159495209535 … -3.329060698546925 -4.878419358631266; … ; -2.5497035732766573 -3.3290606985469253 … -1.2567984709030156 -1.8141947460416663; -3.8495821793884546 -4.878419358631268 … -1.8141947460416659 -2.7147673353232604;;; -8.2898457724129 -9.13005779589696 … -4.149589921643884 -6.287956198199801; -9.130057795896962 -9.130057827297932 … -5.294353669214959 -7.547399206522109; … ; -4.149589921643884 -5.29435366921496 … -1.9094492399159142 -2.8946123678528966; -6.287956198199802 -7.54739920652211 … -2.894612367852896 -4.485542759372606;;; -11.10030839674294 -11.100308356759905 … -6.287956198199803 -9.111848223577793; -11.100308356759903 -10.053883826552566 … -7.547399206522112 -10.05388382655267; … ; -6.287956198199801 -7.547399206522112 … -2.894612367852896 -4.485542759372606; -9.111848223577795 -10.05388382655267 … -4.485542759372607 -6.871104500135687])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.24756966872634 -11.10030839674288 … -8.289845772412898 -11.10030839674294; -11.10030839674288 -9.130057825948253 … -9.13005779589696 -11.100308356759903; … ; -8.289845772412898 -9.130057795896962 … -4.149589921643883 -6.287956198199802; -11.100308396742939 -11.100308356759905 … -6.287956198199803 -9.111848223577795;;; -11.100308396742882 -9.130057825948251 … -9.130057795896963 -11.100308356759905; -9.130057825948253 -6.903159481982707 … -9.130057827297934 -10.053883826552566; … ; -9.130057795896962 -9.130057827297934 … -5.29435366921496 -7.54739920652211; -11.100308356759903 -10.053883826552566 … -7.547399206522111 -10.05388382655267;;; -8.289845772413196 -6.3076219315173105 … -8.28984578101215 -9.111848193526464; -6.307621931517312 -4.51665566581643 … -7.547399237611942 -7.547399206522343; … ; -8.289845781012149 -7.547399237611941 … -5.7689690835817835 -7.547399237612013; -9.111848193526463 -7.547399206522342 … -7.547399237612014 -9.111848224927702;;; … ;;; -5.301031718250391 -6.307621955789518 … -2.5497035732766578 -3.849582179388456; -6.307621955789519 -6.903159495209535 … -3.329060698546925 -4.878419358631266; … ; -2.5497035732766573 -3.3290606985469253 … -1.2567984709030156 -1.8141947460416663; -3.8495821793884546 -4.878419358631268 … -1.8141947460416659 -2.7147673353232604;;; -8.2898457724129 -9.13005779589696 … -4.149589921643884 -6.287956198199801; -9.130057795896962 -9.130057827297932 … -5.294353669214959 -7.547399206522109; … ; -4.149589921643884 -5.29435366921496 … -1.9094492399159142 -2.8946123678528966; -6.287956198199802 -7.54739920652211 … -2.894612367852896 -4.485542759372606;;; -11.10030839674294 -11.100308356759905 … -6.287956198199803 -9.111848223577793; -11.100308356759903 -10.053883826552566 … -7.547399206522112 -10.05388382655267; … ; -6.287956198199801 -7.547399206522112 … -2.894612367852896 -4.485542759372606; -9.111848223577795 -10.05388382655267 … -4.485542759372607 -6.871104500135687]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.006482583601660407 - 0.029071070890365633im -0.016589936254459918 - 0.008066832784554043im … -0.034917341537158315 + 0.002723766033030186im 0.02337284071170525 - 0.0004742068944804797im; -0.01065400288394968 + 0.0469570786858289im 0.0788375237671386 + 0.07682668317458027im … -0.00842029223705856 - 0.0011385877770515212im 0.0013395094794592442 + 0.0035042838721226046im; … ; 0.03042474749565769 - 0.05087479776663737im 0.02095315553426359 - 0.05696011396092441im … 0.022010685985094706 + 0.06692086190642571im 0.07361989158542544 + 0.0059025600605740105im; 0.02352065537682326 - 0.059509315237466526im 0.019549148717214533 - 0.10415721744543778im … 0.028912126998095533 + 0.006187728053114046im 0.022946784888629418 - 0.0194952609316713im;;; 0.06452378755657118 - 0.006827436002015973im 0.053917012077896065 - 0.11153025265481922im … -0.05368942847648568 + 0.013599343569237376im -0.011820162510415403 + 0.0519072534311506im; 0.04226725994164662 - 0.039266210869390694im 0.044476475314957145 - 0.07870160136639753im … -0.0312755728118758 + 0.0006231609652415301im 0.018325591892123076 + 0.02694059301646981im; … ; -0.048756459463719176 - 0.04842557735837706im 0.0015721487137145516 - 0.0203422677042608im … 0.026104522757674185 + 0.04362852106452081im 0.022516834337508153 - 0.050854874665290734im; 0.0034543536990047988 + 0.014578601924689578im 0.05429731252830186 - 0.07126184382124022im … -0.02202822372450467 - 0.0031259501584218344im -0.05718353508339349 - 0.016683485262912492im;;; 0.037976742424234856 - 0.06704127600965294im -0.0601590896639583 - 0.11596937315341868im … -0.08456130979476344 + 0.04333099196763509im 0.008090530617460998 + 0.08220220166360975im; -0.04749540223873002 - 0.05058611417464218im -0.0447512919843802 - 0.015122444615886067im … -0.05914708442584932 + 0.04510827350201573im 0.017334037080740546 - 0.00382000296827437im; … ; -0.03205002145370298 + 0.03483833755407903im 0.041411665224431106 - 0.0072285878972644085im … 0.01312815661513566 + 0.006699171669481543im -0.04635604720094428 - 0.02356422051724988im; 0.051993808423659416 + 0.03194174799637305im 0.03074411756604427 - 0.1122652968944914im … -0.05199427418526057 + 0.0007403672515525067im -0.062241597131076444 + 0.06591650272268962im;;; … ;;; -0.03689399934877186 + 0.08472563673412892im 0.02163738112623364 + 0.010863837133608785im … -0.012294010272337563 + 0.0029749363665109094im -0.05830864079729339 + 0.0513436586867536im; 0.048956259829250906 + 0.034329868647676294im -0.005545337577730031 - 0.018054150880998536im … 0.028008398528469442 + 0.06091404792676994im 0.044861314797415265 + 0.078366720726219im; … ; 0.022512901832046125 - 0.04026561763353186im -0.01937241945995477 - 0.04603342573822028im … 0.019372849111858145 + 0.09275777233911106im 0.049632252535277234 + 0.07002628832172429im; -0.07473629429788765 - 0.01995838578914842im -0.03185763144803561 + 0.009161045869331384im … 0.05745412033298028 + 0.03091107216565375im 0.005295867609353565 - 0.009287280401786335im;;; 0.04065867137299314 + 0.10257174690363267im 0.03466749448261664 - 0.0621233408883999im … 0.004439838127085233 + 0.016297013517417892im -0.038708885715016864 + 0.0890851834924547im; 0.007311662002633987 - 0.006324175483320385im -0.07952722309500168 - 0.010785094331225435im … 0.04136825795573555 + 0.017072991333002822im 0.03905649098054016 + 0.05483098339902591im; … ; -0.02128444449317688 - 0.06043639380636967im -0.04062533893154633 - 0.01762274493729414im … 0.04693408501254142 + 0.1172134048178642im 0.09253582659789258 + 0.04117523017910277im; -0.08081793673373433 + 0.06853977312782772im 0.025564259097744485 + 0.029871835023138685im … 0.05827463523647649 + 0.04678390001925716im -0.02600461090423941 + 0.0006888921928976943im;;; 0.0966143350946308 - 0.045281850357639805im -0.045053423330436784 - 0.12749582792541142im … -0.03394088450977052 + 0.003563507371081986im 0.03462944610999592 + 0.09118006904242798im; -0.037750558467955914 - 0.0013798961302672642im -0.10426517138314272 + 0.09553647357547612im … -0.020626832474733958 + 0.033206214564623575im 0.020746376045368314 + 0.020664878820391926im; … ; -0.009467665286668387 + 0.00880891656424428im 0.025434474195263568 + 0.005436016303978282im … 0.03789724876650969 + 0.07031936679924637im 0.040180232674714815 + 0.017529908221322735im; 0.06976710715624851 + 0.07931678941779927im 0.09827378065885725 - 0.08352615707510654im … 0.019658061504445296 + 0.011197480537579296im 0.018497842791862083 + 0.04312394232543583im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.24756966872634 -11.10030839674288 … -8.289845772412898 -11.10030839674294; -11.10030839674288 -9.130057825948253 … -9.13005779589696 -11.100308356759903; … ; -8.289845772412898 -9.130057795896962 … -4.149589921643883 -6.287956198199802; -11.100308396742939 -11.100308356759905 … -6.287956198199803 -9.111848223577795;;; -11.100308396742882 -9.130057825948251 … -9.130057795896963 -11.100308356759905; -9.130057825948253 -6.903159481982707 … -9.130057827297934 -10.053883826552566; … ; -9.130057795896962 -9.130057827297934 … -5.29435366921496 -7.54739920652211; -11.100308356759903 -10.053883826552566 … -7.547399206522111 -10.05388382655267;;; -8.289845772413196 -6.3076219315173105 … -8.28984578101215 -9.111848193526464; -6.307621931517312 -4.51665566581643 … -7.547399237611942 -7.547399206522343; … ; -8.289845781012149 -7.547399237611941 … -5.7689690835817835 -7.547399237612013; -9.111848193526463 -7.547399206522342 … -7.547399237612014 -9.111848224927702;;; … ;;; -5.301031718250391 -6.307621955789518 … -2.5497035732766578 -3.849582179388456; -6.307621955789519 -6.903159495209535 … -3.329060698546925 -4.878419358631266; … ; -2.5497035732766573 -3.3290606985469253 … -1.2567984709030156 -1.8141947460416663; -3.8495821793884546 -4.878419358631268 … -1.8141947460416659 -2.7147673353232604;;; -8.2898457724129 -9.13005779589696 … -4.149589921643884 -6.287956198199801; -9.130057795896962 -9.130057827297932 … -5.294353669214959 -7.547399206522109; … ; -4.149589921643884 -5.29435366921496 … -1.9094492399159142 -2.8946123678528966; -6.287956198199802 -7.54739920652211 … -2.894612367852896 -4.485542759372606;;; -11.10030839674294 -11.100308356759905 … -6.287956198199803 -9.111848223577793; -11.100308356759903 -10.053883826552566 … -7.547399206522112 -10.05388382655267; … ; -6.287956198199801 -7.547399206522112 … -2.894612367852896 -4.485542759372606; -9.111848223577795 -10.05388382655267 … -4.485542759372607 -6.871104500135687])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.24756966872634 -11.10030839674288 … -8.289845772412898 -11.10030839674294; -11.10030839674288 -9.130057825948253 … -9.13005779589696 -11.100308356759903; … ; -8.289845772412898 -9.130057795896962 … -4.149589921643883 -6.287956198199802; -11.100308396742939 -11.100308356759905 … -6.287956198199803 -9.111848223577795;;; -11.100308396742882 -9.130057825948251 … -9.130057795896963 -11.100308356759905; -9.130057825948253 -6.903159481982707 … -9.130057827297934 -10.053883826552566; … ; -9.130057795896962 -9.130057827297934 … -5.29435366921496 -7.54739920652211; -11.100308356759903 -10.053883826552566 … -7.547399206522111 -10.05388382655267;;; -8.289845772413196 -6.3076219315173105 … -8.28984578101215 -9.111848193526464; -6.307621931517312 -4.51665566581643 … -7.547399237611942 -7.547399206522343; … ; -8.289845781012149 -7.547399237611941 … -5.7689690835817835 -7.547399237612013; -9.111848193526463 -7.547399206522342 … -7.547399237612014 -9.111848224927702;;; … ;;; -5.301031718250391 -6.307621955789518 … -2.5497035732766578 -3.849582179388456; -6.307621955789519 -6.903159495209535 … -3.329060698546925 -4.878419358631266; … ; -2.5497035732766573 -3.3290606985469253 … -1.2567984709030156 -1.8141947460416663; -3.8495821793884546 -4.878419358631268 … -1.8141947460416659 -2.7147673353232604;;; -8.2898457724129 -9.13005779589696 … -4.149589921643884 -6.287956198199801; -9.130057795896962 -9.130057827297932 … -5.294353669214959 -7.547399206522109; … ; -4.149589921643884 -5.29435366921496 … -1.9094492399159142 -2.8946123678528966; -6.287956198199802 -7.54739920652211 … -2.894612367852896 -4.485542759372606;;; -11.10030839674294 -11.100308356759905 … -6.287956198199803 -9.111848223577793; -11.100308356759903 -10.053883826552566 … -7.547399206522112 -10.05388382655267; … ; -6.287956198199801 -7.547399206522112 … -2.894612367852896 -4.485542759372606; -9.111848223577795 -10.05388382655267 … -4.485542759372607 -6.871104500135687]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.006482583601660407 - 0.029071070890365633im -0.016589936254459918 - 0.008066832784554043im … -0.034917341537158315 + 0.002723766033030186im 0.02337284071170525 - 0.0004742068944804797im; -0.01065400288394968 + 0.0469570786858289im 0.0788375237671386 + 0.07682668317458027im … -0.00842029223705856 - 0.0011385877770515212im 0.0013395094794592442 + 0.0035042838721226046im; … ; 0.03042474749565769 - 0.05087479776663737im 0.02095315553426359 - 0.05696011396092441im … 0.022010685985094706 + 0.06692086190642571im 0.07361989158542544 + 0.0059025600605740105im; 0.02352065537682326 - 0.059509315237466526im 0.019549148717214533 - 0.10415721744543778im … 0.028912126998095533 + 0.006187728053114046im 0.022946784888629418 - 0.0194952609316713im;;; 0.06452378755657118 - 0.006827436002015973im 0.053917012077896065 - 0.11153025265481922im … -0.05368942847648568 + 0.013599343569237376im -0.011820162510415403 + 0.0519072534311506im; 0.04226725994164662 - 0.039266210869390694im 0.044476475314957145 - 0.07870160136639753im … -0.0312755728118758 + 0.0006231609652415301im 0.018325591892123076 + 0.02694059301646981im; … ; -0.048756459463719176 - 0.04842557735837706im 0.0015721487137145516 - 0.0203422677042608im … 0.026104522757674185 + 0.04362852106452081im 0.022516834337508153 - 0.050854874665290734im; 0.0034543536990047988 + 0.014578601924689578im 0.05429731252830186 - 0.07126184382124022im … -0.02202822372450467 - 0.0031259501584218344im -0.05718353508339349 - 0.016683485262912492im;;; 0.037976742424234856 - 0.06704127600965294im -0.0601590896639583 - 0.11596937315341868im … -0.08456130979476344 + 0.04333099196763509im 0.008090530617460998 + 0.08220220166360975im; -0.04749540223873002 - 0.05058611417464218im -0.0447512919843802 - 0.015122444615886067im … -0.05914708442584932 + 0.04510827350201573im 0.017334037080740546 - 0.00382000296827437im; … ; -0.03205002145370298 + 0.03483833755407903im 0.041411665224431106 - 0.0072285878972644085im … 0.01312815661513566 + 0.006699171669481543im -0.04635604720094428 - 0.02356422051724988im; 0.051993808423659416 + 0.03194174799637305im 0.03074411756604427 - 0.1122652968944914im … -0.05199427418526057 + 0.0007403672515525067im -0.062241597131076444 + 0.06591650272268962im;;; … ;;; -0.03689399934877186 + 0.08472563673412892im 0.02163738112623364 + 0.010863837133608785im … -0.012294010272337563 + 0.0029749363665109094im -0.05830864079729339 + 0.0513436586867536im; 0.048956259829250906 + 0.034329868647676294im -0.005545337577730031 - 0.018054150880998536im … 0.028008398528469442 + 0.06091404792676994im 0.044861314797415265 + 0.078366720726219im; … ; 0.022512901832046125 - 0.04026561763353186im -0.01937241945995477 - 0.04603342573822028im … 0.019372849111858145 + 0.09275777233911106im 0.049632252535277234 + 0.07002628832172429im; -0.07473629429788765 - 0.01995838578914842im -0.03185763144803561 + 0.009161045869331384im … 0.05745412033298028 + 0.03091107216565375im 0.005295867609353565 - 0.009287280401786335im;;; 0.04065867137299314 + 0.10257174690363267im 0.03466749448261664 - 0.0621233408883999im … 0.004439838127085233 + 0.016297013517417892im -0.038708885715016864 + 0.0890851834924547im; 0.007311662002633987 - 0.006324175483320385im -0.07952722309500168 - 0.010785094331225435im … 0.04136825795573555 + 0.017072991333002822im 0.03905649098054016 + 0.05483098339902591im; … ; -0.02128444449317688 - 0.06043639380636967im -0.04062533893154633 - 0.01762274493729414im … 0.04693408501254142 + 0.1172134048178642im 0.09253582659789258 + 0.04117523017910277im; -0.08081793673373433 + 0.06853977312782772im 0.025564259097744485 + 0.029871835023138685im … 0.05827463523647649 + 0.04678390001925716im -0.02600461090423941 + 0.0006888921928976943im;;; 0.0966143350946308 - 0.045281850357639805im -0.045053423330436784 - 0.12749582792541142im … -0.03394088450977052 + 0.003563507371081986im 0.03462944610999592 + 0.09118006904242798im; -0.037750558467955914 - 0.0013798961302672642im -0.10426517138314272 + 0.09553647357547612im … -0.020626832474733958 + 0.033206214564623575im 0.020746376045368314 + 0.020664878820391926im; … ; -0.009467665286668387 + 0.00880891656424428im 0.025434474195263568 + 0.005436016303978282im … 0.03789724876650969 + 0.07031936679924637im 0.040180232674714815 + 0.017529908221322735im; 0.06976710715624851 + 0.07931678941779927im 0.09827378065885725 - 0.08352615707510654im … 0.019658061504445296 + 0.011197480537579296im 0.018497842791862083 + 0.04312394232543583im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.24756966872634 -11.10030839674288 … -8.289845772412898 -11.10030839674294; -11.10030839674288 -9.130057825948253 … -9.13005779589696 -11.100308356759903; … ; -8.289845772412898 -9.130057795896962 … -4.149589921643883 -6.287956198199802; -11.100308396742939 -11.100308356759905 … -6.287956198199803 -9.111848223577795;;; -11.100308396742882 -9.130057825948251 … -9.130057795896963 -11.100308356759905; -9.130057825948253 -6.903159481982707 … -9.130057827297934 -10.053883826552566; … ; -9.130057795896962 -9.130057827297934 … -5.29435366921496 -7.54739920652211; -11.100308356759903 -10.053883826552566 … -7.547399206522111 -10.05388382655267;;; -8.289845772413196 -6.3076219315173105 … -8.28984578101215 -9.111848193526464; -6.307621931517312 -4.51665566581643 … -7.547399237611942 -7.547399206522343; … ; -8.289845781012149 -7.547399237611941 … -5.7689690835817835 -7.547399237612013; -9.111848193526463 -7.547399206522342 … -7.547399237612014 -9.111848224927702;;; … ;;; -5.301031718250391 -6.307621955789518 … -2.5497035732766578 -3.849582179388456; -6.307621955789519 -6.903159495209535 … -3.329060698546925 -4.878419358631266; … ; -2.5497035732766573 -3.3290606985469253 … -1.2567984709030156 -1.8141947460416663; -3.8495821793884546 -4.878419358631268 … -1.8141947460416659 -2.7147673353232604;;; -8.2898457724129 -9.13005779589696 … -4.149589921643884 -6.287956198199801; -9.130057795896962 -9.130057827297932 … -5.294353669214959 -7.547399206522109; … ; -4.149589921643884 -5.29435366921496 … -1.9094492399159142 -2.8946123678528966; -6.287956198199802 -7.54739920652211 … -2.894612367852896 -4.485542759372606;;; -11.10030839674294 -11.100308356759905 … -6.287956198199803 -9.111848223577793; -11.100308356759903 -10.053883826552566 … -7.547399206522112 -10.05388382655267; … ; -6.287956198199801 -7.547399206522112 … -2.894612367852896 -4.485542759372606; -9.111848223577795 -10.05388382655267 … -4.485542759372607 -6.871104500135687])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.24756966872634 -11.10030839674288 … -8.289845772412898 -11.10030839674294; -11.10030839674288 -9.130057825948253 … -9.13005779589696 -11.100308356759903; … ; -8.289845772412898 -9.130057795896962 … -4.149589921643883 -6.287956198199802; -11.100308396742939 -11.100308356759905 … -6.287956198199803 -9.111848223577795;;; -11.100308396742882 -9.130057825948251 … -9.130057795896963 -11.100308356759905; -9.130057825948253 -6.903159481982707 … -9.130057827297934 -10.053883826552566; … ; -9.130057795896962 -9.130057827297934 … -5.29435366921496 -7.54739920652211; -11.100308356759903 -10.053883826552566 … -7.547399206522111 -10.05388382655267;;; -8.289845772413196 -6.3076219315173105 … -8.28984578101215 -9.111848193526464; -6.307621931517312 -4.51665566581643 … -7.547399237611942 -7.547399206522343; … ; -8.289845781012149 -7.547399237611941 … -5.7689690835817835 -7.547399237612013; -9.111848193526463 -7.547399206522342 … -7.547399237612014 -9.111848224927702;;; … ;;; -5.301031718250391 -6.307621955789518 … -2.5497035732766578 -3.849582179388456; -6.307621955789519 -6.903159495209535 … -3.329060698546925 -4.878419358631266; … ; -2.5497035732766573 -3.3290606985469253 … -1.2567984709030156 -1.8141947460416663; -3.8495821793884546 -4.878419358631268 … -1.8141947460416659 -2.7147673353232604;;; -8.2898457724129 -9.13005779589696 … -4.149589921643884 -6.287956198199801; -9.130057795896962 -9.130057827297932 … -5.294353669214959 -7.547399206522109; … ; -4.149589921643884 -5.29435366921496 … -1.9094492399159142 -2.8946123678528966; -6.287956198199802 -7.54739920652211 … -2.894612367852896 -4.485542759372606;;; -11.10030839674294 -11.100308356759905 … -6.287956198199803 -9.111848223577793; -11.100308356759903 -10.053883826552566 … -7.547399206522112 -10.05388382655267; … ; -6.287956198199801 -7.547399206522112 … -2.894612367852896 -4.485542759372606; -9.111848223577795 -10.05388382655267 … -4.485542759372607 -6.871104500135687]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.006482583601660407 - 0.029071070890365633im -0.016589936254459918 - 0.008066832784554043im … -0.034917341537158315 + 0.002723766033030186im 0.02337284071170525 - 0.0004742068944804797im; -0.01065400288394968 + 0.0469570786858289im 0.0788375237671386 + 0.07682668317458027im … -0.00842029223705856 - 0.0011385877770515212im 0.0013395094794592442 + 0.0035042838721226046im; … ; 0.03042474749565769 - 0.05087479776663737im 0.02095315553426359 - 0.05696011396092441im … 0.022010685985094706 + 0.06692086190642571im 0.07361989158542544 + 0.0059025600605740105im; 0.02352065537682326 - 0.059509315237466526im 0.019549148717214533 - 0.10415721744543778im … 0.028912126998095533 + 0.006187728053114046im 0.022946784888629418 - 0.0194952609316713im;;; 0.06452378755657118 - 0.006827436002015973im 0.053917012077896065 - 0.11153025265481922im … -0.05368942847648568 + 0.013599343569237376im -0.011820162510415403 + 0.0519072534311506im; 0.04226725994164662 - 0.039266210869390694im 0.044476475314957145 - 0.07870160136639753im … -0.0312755728118758 + 0.0006231609652415301im 0.018325591892123076 + 0.02694059301646981im; … ; -0.048756459463719176 - 0.04842557735837706im 0.0015721487137145516 - 0.0203422677042608im … 0.026104522757674185 + 0.04362852106452081im 0.022516834337508153 - 0.050854874665290734im; 0.0034543536990047988 + 0.014578601924689578im 0.05429731252830186 - 0.07126184382124022im … -0.02202822372450467 - 0.0031259501584218344im -0.05718353508339349 - 0.016683485262912492im;;; 0.037976742424234856 - 0.06704127600965294im -0.0601590896639583 - 0.11596937315341868im … -0.08456130979476344 + 0.04333099196763509im 0.008090530617460998 + 0.08220220166360975im; -0.04749540223873002 - 0.05058611417464218im -0.0447512919843802 - 0.015122444615886067im … -0.05914708442584932 + 0.04510827350201573im 0.017334037080740546 - 0.00382000296827437im; … ; -0.03205002145370298 + 0.03483833755407903im 0.041411665224431106 - 0.0072285878972644085im … 0.01312815661513566 + 0.006699171669481543im -0.04635604720094428 - 0.02356422051724988im; 0.051993808423659416 + 0.03194174799637305im 0.03074411756604427 - 0.1122652968944914im … -0.05199427418526057 + 0.0007403672515525067im -0.062241597131076444 + 0.06591650272268962im;;; … ;;; -0.03689399934877186 + 0.08472563673412892im 0.02163738112623364 + 0.010863837133608785im … -0.012294010272337563 + 0.0029749363665109094im -0.05830864079729339 + 0.0513436586867536im; 0.048956259829250906 + 0.034329868647676294im -0.005545337577730031 - 0.018054150880998536im … 0.028008398528469442 + 0.06091404792676994im 0.044861314797415265 + 0.078366720726219im; … ; 0.022512901832046125 - 0.04026561763353186im -0.01937241945995477 - 0.04603342573822028im … 0.019372849111858145 + 0.09275777233911106im 0.049632252535277234 + 0.07002628832172429im; -0.07473629429788765 - 0.01995838578914842im -0.03185763144803561 + 0.009161045869331384im … 0.05745412033298028 + 0.03091107216565375im 0.005295867609353565 - 0.009287280401786335im;;; 0.04065867137299314 + 0.10257174690363267im 0.03466749448261664 - 0.0621233408883999im … 0.004439838127085233 + 0.016297013517417892im -0.038708885715016864 + 0.0890851834924547im; 0.007311662002633987 - 0.006324175483320385im -0.07952722309500168 - 0.010785094331225435im … 0.04136825795573555 + 0.017072991333002822im 0.03905649098054016 + 0.05483098339902591im; … ; -0.02128444449317688 - 0.06043639380636967im -0.04062533893154633 - 0.01762274493729414im … 0.04693408501254142 + 0.1172134048178642im 0.09253582659789258 + 0.04117523017910277im; -0.08081793673373433 + 0.06853977312782772im 0.025564259097744485 + 0.029871835023138685im … 0.05827463523647649 + 0.04678390001925716im -0.02600461090423941 + 0.0006888921928976943im;;; 0.0966143350946308 - 0.045281850357639805im -0.045053423330436784 - 0.12749582792541142im … -0.03394088450977052 + 0.003563507371081986im 0.03462944610999592 + 0.09118006904242798im; -0.037750558467955914 - 0.0013798961302672642im -0.10426517138314272 + 0.09553647357547612im … -0.020626832474733958 + 0.033206214564623575im 0.020746376045368314 + 0.020664878820391926im; … ; -0.009467665286668387 + 0.00880891656424428im 0.025434474195263568 + 0.005436016303978282im … 0.03789724876650969 + 0.07031936679924637im 0.040180232674714815 + 0.017529908221322735im; 0.06976710715624851 + 0.07931678941779927im 0.09827378065885725 - 0.08352615707510654im … 0.019658061504445296 + 0.011197480537579296im 0.018497842791862083 + 0.04312394232543583im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.24756966872634 -11.10030839674288 … -8.289845772412898 -11.10030839674294; -11.10030839674288 -9.130057825948253 … -9.13005779589696 -11.100308356759903; … ; -8.289845772412898 -9.130057795896962 … -4.149589921643883 -6.287956198199802; -11.100308396742939 -11.100308356759905 … -6.287956198199803 -9.111848223577795;;; -11.100308396742882 -9.130057825948251 … -9.130057795896963 -11.100308356759905; -9.130057825948253 -6.903159481982707 … -9.130057827297934 -10.053883826552566; … ; -9.130057795896962 -9.130057827297934 … -5.29435366921496 -7.54739920652211; -11.100308356759903 -10.053883826552566 … -7.547399206522111 -10.05388382655267;;; -8.289845772413196 -6.3076219315173105 … -8.28984578101215 -9.111848193526464; -6.307621931517312 -4.51665566581643 … -7.547399237611942 -7.547399206522343; … ; -8.289845781012149 -7.547399237611941 … -5.7689690835817835 -7.547399237612013; -9.111848193526463 -7.547399206522342 … -7.547399237612014 -9.111848224927702;;; … ;;; -5.301031718250391 -6.307621955789518 … -2.5497035732766578 -3.849582179388456; -6.307621955789519 -6.903159495209535 … -3.329060698546925 -4.878419358631266; … ; -2.5497035732766573 -3.3290606985469253 … -1.2567984709030156 -1.8141947460416663; -3.8495821793884546 -4.878419358631268 … -1.8141947460416659 -2.7147673353232604;;; -8.2898457724129 -9.13005779589696 … -4.149589921643884 -6.287956198199801; -9.130057795896962 -9.130057827297932 … -5.294353669214959 -7.547399206522109; … ; -4.149589921643884 -5.29435366921496 … -1.9094492399159142 -2.8946123678528966; -6.287956198199802 -7.54739920652211 … -2.894612367852896 -4.485542759372606;;; -11.10030839674294 -11.100308356759905 … -6.287956198199803 -9.111848223577793; -11.100308356759903 -10.053883826552566 … -7.547399206522112 -10.05388382655267; … ; -6.287956198199801 -7.547399206522112 … -2.894612367852896 -4.485542759372606; -9.111848223577795 -10.05388382655267 … -4.485542759372607 -6.871104500135687])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.24756966872634 -11.10030839674288 … -8.289845772412898 -11.10030839674294; -11.10030839674288 -9.130057825948253 … -9.13005779589696 -11.100308356759903; … ; -8.289845772412898 -9.130057795896962 … -4.149589921643883 -6.287956198199802; -11.100308396742939 -11.100308356759905 … -6.287956198199803 -9.111848223577795;;; -11.100308396742882 -9.130057825948251 … -9.130057795896963 -11.100308356759905; -9.130057825948253 -6.903159481982707 … -9.130057827297934 -10.053883826552566; … ; -9.130057795896962 -9.130057827297934 … -5.29435366921496 -7.54739920652211; -11.100308356759903 -10.053883826552566 … -7.547399206522111 -10.05388382655267;;; -8.289845772413196 -6.3076219315173105 … -8.28984578101215 -9.111848193526464; -6.307621931517312 -4.51665566581643 … -7.547399237611942 -7.547399206522343; … ; -8.289845781012149 -7.547399237611941 … -5.7689690835817835 -7.547399237612013; -9.111848193526463 -7.547399206522342 … -7.547399237612014 -9.111848224927702;;; … ;;; -5.301031718250391 -6.307621955789518 … -2.5497035732766578 -3.849582179388456; -6.307621955789519 -6.903159495209535 … -3.329060698546925 -4.878419358631266; … ; -2.5497035732766573 -3.3290606985469253 … -1.2567984709030156 -1.8141947460416663; -3.8495821793884546 -4.878419358631268 … -1.8141947460416659 -2.7147673353232604;;; -8.2898457724129 -9.13005779589696 … -4.149589921643884 -6.287956198199801; -9.130057795896962 -9.130057827297932 … -5.294353669214959 -7.547399206522109; … ; -4.149589921643884 -5.29435366921496 … -1.9094492399159142 -2.8946123678528966; -6.287956198199802 -7.54739920652211 … -2.894612367852896 -4.485542759372606;;; -11.10030839674294 -11.100308356759905 … -6.287956198199803 -9.111848223577793; -11.100308356759903 -10.053883826552566 … -7.547399206522112 -10.05388382655267; … ; -6.287956198199801 -7.547399206522112 … -2.894612367852896 -4.485542759372606; -9.111848223577795 -10.05388382655267 … -4.485542759372607 -6.871104500135687]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.006482583601660407 - 0.029071070890365633im -0.016589936254459918 - 0.008066832784554043im … -0.034917341537158315 + 0.002723766033030186im 0.02337284071170525 - 0.0004742068944804797im; -0.01065400288394968 + 0.0469570786858289im 0.0788375237671386 + 0.07682668317458027im … -0.00842029223705856 - 0.0011385877770515212im 0.0013395094794592442 + 0.0035042838721226046im; … ; 0.03042474749565769 - 0.05087479776663737im 0.02095315553426359 - 0.05696011396092441im … 0.022010685985094706 + 0.06692086190642571im 0.07361989158542544 + 0.0059025600605740105im; 0.02352065537682326 - 0.059509315237466526im 0.019549148717214533 - 0.10415721744543778im … 0.028912126998095533 + 0.006187728053114046im 0.022946784888629418 - 0.0194952609316713im;;; 0.06452378755657118 - 0.006827436002015973im 0.053917012077896065 - 0.11153025265481922im … -0.05368942847648568 + 0.013599343569237376im -0.011820162510415403 + 0.0519072534311506im; 0.04226725994164662 - 0.039266210869390694im 0.044476475314957145 - 0.07870160136639753im … -0.0312755728118758 + 0.0006231609652415301im 0.018325591892123076 + 0.02694059301646981im; … ; -0.048756459463719176 - 0.04842557735837706im 0.0015721487137145516 - 0.0203422677042608im … 0.026104522757674185 + 0.04362852106452081im 0.022516834337508153 - 0.050854874665290734im; 0.0034543536990047988 + 0.014578601924689578im 0.05429731252830186 - 0.07126184382124022im … -0.02202822372450467 - 0.0031259501584218344im -0.05718353508339349 - 0.016683485262912492im;;; 0.037976742424234856 - 0.06704127600965294im -0.0601590896639583 - 0.11596937315341868im … -0.08456130979476344 + 0.04333099196763509im 0.008090530617460998 + 0.08220220166360975im; -0.04749540223873002 - 0.05058611417464218im -0.0447512919843802 - 0.015122444615886067im … -0.05914708442584932 + 0.04510827350201573im 0.017334037080740546 - 0.00382000296827437im; … ; -0.03205002145370298 + 0.03483833755407903im 0.041411665224431106 - 0.0072285878972644085im … 0.01312815661513566 + 0.006699171669481543im -0.04635604720094428 - 0.02356422051724988im; 0.051993808423659416 + 0.03194174799637305im 0.03074411756604427 - 0.1122652968944914im … -0.05199427418526057 + 0.0007403672515525067im -0.062241597131076444 + 0.06591650272268962im;;; … ;;; -0.03689399934877186 + 0.08472563673412892im 0.02163738112623364 + 0.010863837133608785im … -0.012294010272337563 + 0.0029749363665109094im -0.05830864079729339 + 0.0513436586867536im; 0.048956259829250906 + 0.034329868647676294im -0.005545337577730031 - 0.018054150880998536im … 0.028008398528469442 + 0.06091404792676994im 0.044861314797415265 + 0.078366720726219im; … ; 0.022512901832046125 - 0.04026561763353186im -0.01937241945995477 - 0.04603342573822028im … 0.019372849111858145 + 0.09275777233911106im 0.049632252535277234 + 0.07002628832172429im; -0.07473629429788765 - 0.01995838578914842im -0.03185763144803561 + 0.009161045869331384im … 0.05745412033298028 + 0.03091107216565375im 0.005295867609353565 - 0.009287280401786335im;;; 0.04065867137299314 + 0.10257174690363267im 0.03466749448261664 - 0.0621233408883999im … 0.004439838127085233 + 0.016297013517417892im -0.038708885715016864 + 0.0890851834924547im; 0.007311662002633987 - 0.006324175483320385im -0.07952722309500168 - 0.010785094331225435im … 0.04136825795573555 + 0.017072991333002822im 0.03905649098054016 + 0.05483098339902591im; … ; -0.02128444449317688 - 0.06043639380636967im -0.04062533893154633 - 0.01762274493729414im … 0.04693408501254142 + 0.1172134048178642im 0.09253582659789258 + 0.04117523017910277im; -0.08081793673373433 + 0.06853977312782772im 0.025564259097744485 + 0.029871835023138685im … 0.05827463523647649 + 0.04678390001925716im -0.02600461090423941 + 0.0006888921928976943im;;; 0.0966143350946308 - 0.045281850357639805im -0.045053423330436784 - 0.12749582792541142im … -0.03394088450977052 + 0.003563507371081986im 0.03462944610999592 + 0.09118006904242798im; -0.037750558467955914 - 0.0013798961302672642im -0.10426517138314272 + 0.09553647357547612im … -0.020626832474733958 + 0.033206214564623575im 0.020746376045368314 + 0.020664878820391926im; … ; -0.009467665286668387 + 0.00880891656424428im 0.025434474195263568 + 0.005436016303978282im … 0.03789724876650969 + 0.07031936679924637im 0.040180232674714815 + 0.017529908221322735im; 0.06976710715624851 + 0.07931678941779927im 0.09827378065885725 - 0.08352615707510654im … 0.019658061504445296 + 0.011197480537579296im 0.018497842791862083 + 0.04312394232543583im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488507), converged = true, ρ = [7.589784543416935e-5 0.0011262712728275107 … 0.006697037550043274 0.001126271272827531; 0.001126271272827531 0.005274334457338965 … 0.005274334457338988 0.0011262712728275343; … ; 0.0066970375500432795 0.005274334457338997 … 0.023244754190994064 0.012258986825192898; 0.0011262712728275293 0.0011262712728275241 … 0.012258986825192894 0.003770008629868713;;; 0.0011262712728275313 0.005274334457338953 … 0.005274334457338999 0.0011262712728275298; 0.0052743344573389665 0.014620065304662673 … 0.005274334457338985 0.0025880808748312578; … ; 0.0052743344573390055 0.005274334457338992 … 0.0181076866460842 0.008922003044702451; 0.001126271272827528 0.0025880808748312487 … 0.008922003044702446 0.0025880808748312695;;; 0.006697037550043243 0.01641210910153999 … 0.006697037550043274 0.0037700086298686946; 0.016412109101540007 0.03127783931584924 … 0.008922003044702413 0.008922003044702415; … ; 0.006697037550043281 0.00892200304470242 … 0.016476756359392258 0.008922003044702451; 0.003770008629868693 0.008922003044702406 … 0.008922003044702441 0.0037700086298687097;;; … ;;; 0.01985383985333853 0.016412109101540003 … 0.03715667363560402 0.02719080068651589; 0.016412109101540017 0.014620065304662687 … 0.03230127212637573 0.022322100931649446; … ; 0.03715667363560403 0.03230127212637574 … 0.04629698070138989 0.042636582731377666; 0.027190800686515887 0.02232210093164944 … 0.042636582731377666 0.03477222914193489;;; 0.006697037550043248 0.005274334457338957 … 0.023244754190994026 0.01225898682519286; 0.005274334457338969 0.005274334457338963 … 0.018107686646084142 0.008922003044702418; … ; 0.023244754190994033 0.01810768664608415 … 0.04037111033551805 0.0314916038113289; 0.012258986825192858 0.00892200304470241 … 0.03149160381132889 0.020047163432682074;;; 0.0011262712728275308 0.0011262712728275094 … 0.012258986825192882 0.003770008629868694; 0.0011262712728275226 0.0025880808748312404 … 0.008922003044702417 0.002588080874831257; … ; 0.01225898682519289 0.008922003044702427 … 0.03149160381132892 0.02004716343268209; 0.0037700086298686924 0.0025880808748312487 … 0.020047163432682088 0.00895260349672554;;;;], eigenvalues = [[-0.17836835653905742, 0.26249194499192263, 0.2624919449919227, 0.26249194499192285, 0.3546921481680179, 0.3546921481680184, 0.3546921481680399], [-0.12755037617886783, 0.064753205947129, 0.22545166517457416, 0.2254516651745747, 0.32197764961168823, 0.38922276908510045, 0.38922276908510095], [-0.10818729216475456, 0.07755003473484505, 0.17278328011502608, 0.1727832801150263, 0.28435185361986975, 0.3305476484330698, 0.5267232426396661], [-0.057773253743947386, 0.012724782205920625, 0.09766073750140197, 0.18417825333006724, 0.3152284179599582, 0.4720312183851259, 0.4979135176663985]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930589633, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.9492137008221015 - 0.026401465851150906im 3.151389916206918e-13 + 7.895249797267141e-14im … 2.5044575819103115e-10 - 2.6983302804826356e-10im -3.873490514092751e-8 + 4.161767615804632e-8im; -0.07218067447775184 + 0.06827406113788137im 0.09207463811785255 + 0.04764095265070446im … -0.22405963528552342 - 0.2282828945221116im 0.09845875230379883 - 0.12851032338942134im; … ; 0.011753524515423639 + 0.00032691297638610554im -0.009690489798355365 - 0.015972105675252316im … -0.04704267783927394 + 0.07104550746338865im -0.04113016944683364 - 0.0030869042731561315im; -0.07218067447782105 + 0.06827406113790109im -0.2574710651575679 - 0.08812621156138098im … -0.08168197150532057 + 0.47218118134930254im -0.16382387436078405 + 0.09715118357748517im], [0.7769740124530841 - 0.49496462551849696im -0.16180868250459016 - 0.12263556557044186im … -1.0502052183659315e-10 + 6.80219074305708e-11im 6.491575968101096e-11 + 1.2231687476007754e-10im; 0.01353982284038559 - 0.06106826446156673im 0.00892510045731247 - 0.0012291477371510664im … 1.413515383796418e-10 + 1.7702931844675998e-10im 1.7741018840837353e-11 + 1.407880686263674e-10im; … ; -0.00416832423967389 + 0.0026553951782877787im 0.06737442075723893 + 0.05106339206676525im … 0.01018485048729593 + 0.0249918945188438im -0.07296335155829385 + 0.0711117258621948im; 0.025306868302465986 - 0.11414082328902833im -0.09918390739059095 + 0.013659417718919046im … 0.10998839454394685 + 0.04629771547684685im -0.0057895453001606785 + 0.4504847257148308im], [-0.3325498545791803 - 0.8637257994222832im -4.465825330393034e-16 - 1.8083724596114922e-14im … -1.0093316820472451e-11 - 3.9842105928355156e-11im -7.101536519057695e-9 - 1.4480513395538427e-9im; -0.06263665551342008 - 0.027812222511458845im -0.04470706782474934 - 0.026940006077223858im … -0.025765920160324675 - 0.0031747522147444526im 0.003279753010733015 + 0.00213098493529814im; … ; 0.003806805720784231 + 0.009887348525819871im -6.61768144785268e-14 - 1.3984356976782623e-14im … -1.0821324586198492e-10 - 3.3071187267528746e-11im -0.0475082901808732 + 0.025435495323755702im; -0.1464530316619608 - 0.06502876423838im 0.251165053208402 + 0.1513494037751536im … -0.3693018367649217 - 0.04550358845353887im -0.043872420845470446 + 0.1493534679564524im], [-0.005112731534328821 - 0.7993079686892255im 6.646502054958676e-15 - 4.8190326927831826e-15im … -0.048431142012516554 + 0.17506822571153527im 6.550007410902904e-6 - 3.31671026623377e-6im; -0.27885184103958655 - 0.275307191826334im -0.5053140522534719 - 0.3605758245724298im … -0.08971846277162945 - 0.15834327043378962im -1.1173944624780388e-6 + 3.3390226817660898e-6im; … ; 8.475865908883516e-5 + 0.013250895568482126im 4.185640091494934e-5 + 0.00025040401840172163im … 0.0034802567128055665 - 0.012577593120707832im -0.04285451573609196 - 0.01698758797521164im; -0.047743282848481776 - 0.047136389993281166im 0.004325094141366695 + 0.003086247808506059im … -0.07068529112107168 - 0.12476707019794471im -0.4325609724951642 + 0.18699168473227648im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653905742, 0.26249194499192263, 0.2624919449919227, 0.26249194499192285, 0.3546921481680179, 0.3546921481680184, 0.3546921481680399], [-0.12755037617886783, 0.064753205947129, 0.22545166517457416, 0.2254516651745747, 0.32197764961168823, 0.38922276908510045, 0.38922276908510095], [-0.10818729216475456, 0.07755003473484505, 0.17278328011502608, 0.1727832801150263, 0.28435185361986975, 0.3305476484330698, 0.5267232426396661], [-0.057773253743947386, 0.012724782205920625, 0.09766073750140197, 0.18417825333006724, 0.3152284179599582, 0.4720312183851259, 0.4979135176663985]], X = [[-0.9492137008221015 - 0.026401465851150906im 3.151389916206918e-13 + 7.895249797267141e-14im … 2.5044575819103115e-10 - 2.6983302804826356e-10im -3.873490514092751e-8 + 4.161767615804632e-8im; -0.07218067447775184 + 0.06827406113788137im 0.09207463811785255 + 0.04764095265070446im … -0.22405963528552342 - 0.2282828945221116im 0.09845875230379883 - 0.12851032338942134im; … ; 0.011753524515423639 + 0.00032691297638610554im -0.009690489798355365 - 0.015972105675252316im … -0.04704267783927394 + 0.07104550746338865im -0.04113016944683364 - 0.0030869042731561315im; -0.07218067447782105 + 0.06827406113790109im -0.2574710651575679 - 0.08812621156138098im … -0.08168197150532057 + 0.47218118134930254im -0.16382387436078405 + 0.09715118357748517im], [0.7769740124530841 - 0.49496462551849696im -0.16180868250459016 - 0.12263556557044186im … -1.0502052183659315e-10 + 6.80219074305708e-11im 6.491575968101096e-11 + 1.2231687476007754e-10im; 0.01353982284038559 - 0.06106826446156673im 0.00892510045731247 - 0.0012291477371510664im … 1.413515383796418e-10 + 1.7702931844675998e-10im 1.7741018840837353e-11 + 1.407880686263674e-10im; … ; -0.00416832423967389 + 0.0026553951782877787im 0.06737442075723893 + 0.05106339206676525im … 0.01018485048729593 + 0.0249918945188438im -0.07296335155829385 + 0.0711117258621948im; 0.025306868302465986 - 0.11414082328902833im -0.09918390739059095 + 0.013659417718919046im … 0.10998839454394685 + 0.04629771547684685im -0.0057895453001606785 + 0.4504847257148308im], [-0.3325498545791803 - 0.8637257994222832im -4.465825330393034e-16 - 1.8083724596114922e-14im … -1.0093316820472451e-11 - 3.9842105928355156e-11im -7.101536519057695e-9 - 1.4480513395538427e-9im; -0.06263665551342008 - 0.027812222511458845im -0.04470706782474934 - 0.026940006077223858im … -0.025765920160324675 - 0.0031747522147444526im 0.003279753010733015 + 0.00213098493529814im; … ; 0.003806805720784231 + 0.009887348525819871im -6.61768144785268e-14 - 1.3984356976782623e-14im … -1.0821324586198492e-10 - 3.3071187267528746e-11im -0.0475082901808732 + 0.025435495323755702im; -0.1464530316619608 - 0.06502876423838im 0.251165053208402 + 0.1513494037751536im … -0.3693018367649217 - 0.04550358845353887im -0.043872420845470446 + 0.1493534679564524im], [-0.005112731534328821 - 0.7993079686892255im 6.646502054958676e-15 - 4.8190326927831826e-15im … -0.048431142012516554 + 0.17506822571153527im 6.550007410902904e-6 - 3.31671026623377e-6im; -0.27885184103958655 - 0.275307191826334im -0.5053140522534719 - 0.3605758245724298im … -0.08971846277162945 - 0.15834327043378962im -1.1173944624780388e-6 + 3.3390226817660898e-6im; … ; 8.475865908883516e-5 + 0.013250895568482126im 4.185640091494934e-5 + 0.00025040401840172163im … 0.0034802567128055665 - 0.012577593120707832im -0.04285451573609196 - 0.01698758797521164im; -0.047743282848481776 - 0.047136389993281166im 0.004325094141366695 + 0.003086247808506059im … -0.07068529112107168 - 0.12476707019794471im -0.4325609724951642 + 0.18699168473227648im]], residual_norms = [[0.0, 2.2015138581255537e-12, 0.0, 2.0783248669554722e-12, 8.12992612560536e-10, 1.3664482326259193e-9, 2.1094508067777749e-7], [0.0, 0.0, 8.663594682380032e-13, 8.510183142328578e-13, 1.0282344083471899e-10, 3.706460082498063e-9, 3.355312997064716e-9], [9.647786940981198e-13, 1.7977636404980526e-12, 6.599320324882707e-13, 1.4335823377911027e-12, 5.04756345645359e-11, 1.4709399453260824e-9, 8.334280944371775e-7], [7.791921076177093e-13, 5.355607420591041e-13, 7.342786459192072e-13, 1.7860690570441462e-12, 1.5606051870973286e-10, 1.2156524978572468e-5, 6.349152799736779e-6]], n_iter = [5, 4, 3, 3], converged = 1, n_matvec = 126)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21070406329804534, 0.027617052345668372, 0.0023184297863470707, 0.00025892135885759816, 9.657598862300845e-6, 1.0718432775925786e-6, 4.307381844394824e-8, 2.9823485181628213e-9, 1.2311363101329872e-10, 8.048575516877212e-12], history_Etot = [-7.905257502484495, -7.9105437424892795, -7.910593444961804, -7.910594393181546, -7.910594396439638, -7.910594396488435, -7.910594396488501, -7.9105943964885075, -7.910594396488506, -7.910594396488507], occupation_threshold = 1.0e-6, runtime_ns = 0x00000000d61d0fff)