Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#782"{DFTK.var"#anderson#781#783"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668721308 -11.1003083967418 … -8.289845772412038 -11.10030839674186; -11.1003083967418 -9.130057825947393 … -9.130057795896102 -11.100308356758823; … ; -8.289845772412038 -9.130057795896102 … -4.1495899216427485 -6.2879561981988195; -11.100308396741859 -11.100308356758827 … -6.28795619819882 -9.111848223577017;;; -11.100308396741802 -9.130057825947391 … -9.130057795896104 -11.100308356758825; -9.130057825947393 -6.903159481981727 … -9.130057827297076 -10.05388382655173; … ; -9.130057795896102 -9.130057827297076 … -5.294353669213903 -7.547399206521211; -11.100308356758823 -10.05388382655173 … -7.547399206521212 -10.053883826551834;;; -8.289845772412336 -6.3076219315163025 … -8.28984578101129 -9.111848193525685; -6.307621931516304 -4.516655665815279 … -7.547399237611043 -7.547399206521444; … ; -8.289845781011289 -7.547399237611042 … -5.76896908358076 -7.547399237611114; -9.111848193525683 -7.547399206521443 … -7.547399237611115 -9.111848224926923;;; … ;;; -5.301031718249321 -6.30762195578851 … -2.549703573275489 -3.8495821793873053; -6.307621955788511 -6.9031594952085555 … -3.329060698545761 -4.878419358630173; … ; -2.5497035732754876 -3.329060698545761 … -1.2567984709020368 -1.8141947460405534; -3.849582179387304 -4.8784193586301745 … -1.814194746040553 -2.714767335322085;;; -8.28984577241204 -9.1300577958961 … -4.149589921642749 -6.287956198198818; -9.130057795896104 -9.130057827297072 … -5.294353669213902 -7.54739920652121; … ; -4.149589921642749 -5.294353669213903 … -1.9094492399147893 -2.89461236785172; -6.287956198198819 -7.547399206521211 … -2.89461236785172 -4.48554275937149;;; -11.10030839674186 -11.100308356758825 … -6.2879561981988195 -9.111848223577013; -11.100308356758823 -10.05388382655173 … -7.547399206521213 -10.053883826551834; … ; -6.287956198198818 -7.547399206521213 … -2.89461236785172 -4.48554275937149; -9.111848223577015 -10.053883826551834 … -4.485542759371491 -6.871104500134764])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668721308 -11.1003083967418 … -8.289845772412038 -11.10030839674186; -11.1003083967418 -9.130057825947393 … -9.130057795896102 -11.100308356758823; … ; -8.289845772412038 -9.130057795896102 … -4.1495899216427485 -6.2879561981988195; -11.100308396741859 -11.100308356758827 … -6.28795619819882 -9.111848223577017;;; -11.100308396741802 -9.130057825947391 … -9.130057795896104 -11.100308356758825; -9.130057825947393 -6.903159481981727 … -9.130057827297076 -10.05388382655173; … ; -9.130057795896102 -9.130057827297076 … -5.294353669213903 -7.547399206521211; -11.100308356758823 -10.05388382655173 … -7.547399206521212 -10.053883826551834;;; -8.289845772412336 -6.3076219315163025 … -8.28984578101129 -9.111848193525685; -6.307621931516304 -4.516655665815279 … -7.547399237611043 -7.547399206521444; … ; -8.289845781011289 -7.547399237611042 … -5.76896908358076 -7.547399237611114; -9.111848193525683 -7.547399206521443 … -7.547399237611115 -9.111848224926923;;; … ;;; -5.301031718249321 -6.30762195578851 … -2.549703573275489 -3.8495821793873053; -6.307621955788511 -6.9031594952085555 … -3.329060698545761 -4.878419358630173; … ; -2.5497035732754876 -3.329060698545761 … -1.2567984709020368 -1.8141947460405534; -3.849582179387304 -4.8784193586301745 … -1.814194746040553 -2.714767335322085;;; -8.28984577241204 -9.1300577958961 … -4.149589921642749 -6.287956198198818; -9.130057795896104 -9.130057827297072 … -5.294353669213902 -7.54739920652121; … ; -4.149589921642749 -5.294353669213903 … -1.9094492399147893 -2.89461236785172; -6.287956198198819 -7.547399206521211 … -2.89461236785172 -4.48554275937149;;; -11.10030839674186 -11.100308356758825 … -6.2879561981988195 -9.111848223577013; -11.100308356758823 -10.05388382655173 … -7.547399206521213 -10.053883826551834; … ; -6.287956198198818 -7.547399206521213 … -2.89461236785172 -4.48554275937149; -9.111848223577015 -10.053883826551834 … -4.485542759371491 -6.871104500134764]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.02856439982331795 - 0.007930602881844426im 0.012633730221717345 - 0.015376296805202555im … -0.08902150223926059 - 0.04519729583075037im -0.03229549454958106 + 0.01980431918483768im; 0.00258060239358561 - 0.04710910198685636im -0.022976973810346524 - 0.01956933872190507im … -0.029304875250065938 + 0.004333452060645478im 0.018090133134665953 - 0.01354323373984374im; … ; -0.04245654220613576 - 0.02389404316142464im -0.01617882707521795 + 0.021627153638707576im … 0.019658881977052733 - 0.006915870486033672im 0.0021428332901676696 - 0.06094605361889732im; -0.02138995656613516 + 0.02665970079094987im 0.024926260614385673 + 0.005734530644689489im … -0.03162493660365538 - 0.1129884034770299im -0.08873992508897954 - 0.04712608968112261im;;; 0.007140534012345627 - 0.09695842587373993im -0.03163909441799989 - 0.10421704618503666im … -0.026766077668684187 + 0.016446440374518145im -0.03158403809989239 - 0.03406997279109672im; -0.06936355645049365 + 0.04110557968730908im -0.029683511023122916 - 0.012718221429870573im … -0.03509741130691029 - 0.022411775403974404im -0.09339213521211699 + 0.0005670153493806682im; … ; -0.0745137024986206 + 0.001327119845603443im 0.03362313353630146 + 0.01585162669255008im … 0.012332900327216026 - 0.07710823335397758im -0.06868285214461126 - 0.10366647858449259im; 0.03726348613831455 + 0.007677147292901004im 0.08014620668464426 - 0.10186272965191898im … -0.08402596343017374 - 0.04158091073107222im -0.08099821203041466 + 0.0050262828694117925im;;; -0.07325296060430224 - 0.09586868399287023im -0.07867461002538186 - 0.048266933319485644im … 0.0013954590531750632 - 0.022496742307813365im -0.04379130332646115 - 0.051416186940060706im; -0.02625679015470177 + 0.0065252320376734535im 0.026016508370064827 - 0.03243814240200472im … -0.07203675109021339 + 0.013541936818378286im -0.06220239177863359 + 0.09660321603544024im; … ; 0.04153504766372637 + 0.01331030654083716im 0.07019698712449225 - 0.09147771953671863im … -0.037728609933295444 - 0.052416671093131015im -0.058130294852225636 - 0.0058454722545292145im; 0.08002738118770879 - 0.13510178921236576im -0.04400105185244052 - 0.187860151259795im … -0.02629552676524073 + 0.010366436645084208im 0.031714943291955545 - 0.0026367759234551917im;;; … ;;; -0.013375720520059805 - 0.0039936717164901795im -0.008222675809882323 + 0.08473098561907183im … -0.04916378873474542 - 0.017699463147965985im 0.061392937033277216 - 0.0010301988105142577im; -0.02274931248927608 + 0.0028583874138716683im 0.02786553618500972 + 0.045967675151090834im … 0.03854766870943414 + 0.01807748293012im 0.046609348362627936 - 0.05875129213053931im; … ; 0.1052541165677732 + 0.09010663517973999im 0.035083393861567495 - 0.01474259944869584im … -0.033694469307053984 - 0.013701840581228517im -0.0010435524134577885 + 0.1446228473423975im; 0.05083172860979914 - 0.01765931913438068im -0.04331381142223806 + 0.023107392619677144im … -0.023217565907813247 - 0.06864806896243232im 0.060681966001454375 + 0.046386759240446204im;;; -0.006539090028099923 + 0.05699405036644058im 0.08632904736940115 + 0.07698073772134953im … 0.0784441395586805 - 0.016353973844383113im 0.02570533482801215 - 0.05926020316598995im; -0.022429803327936617 + 0.023887104429213324im 0.031068302342083694 + 0.007662941130103304im … 0.09615562315295657 - 0.1075548867470739im -0.03375021842689207 - 0.11658557654353437im; … ; 0.009834240791236293 - 0.005353777190008337im -0.055480649199716355 + 0.04795682441219807im … -0.03951370267146622 + 0.019701208421952762im 0.07004466693398305 + 0.06528236502724424im; -0.06572742521942261 + 0.06184117441085868im 0.006449787723797885 + 0.1510284034405719im … 0.004022479061230771 + 0.0056685563070860145im 0.03304757410164411 - 0.023621299282798058im;;; 0.020160539752306084 + 0.029012856997390236im 0.012079890460018231 - 0.006464308826026499im … 0.06300993796382257 - 0.1622816244702312im -0.04891059769424166 - 0.11298002715175978im; -0.014135300216803662 + 0.020721074689902703im -0.019683443595450212 + 0.01505267810430558im … -0.03599658274075317 - 0.15721925857669572im -0.0747799731021385 - 0.01327871784699651im; … ; -0.05192538618050946 + 0.057632750696175954im -0.002767117583002892 + 0.08954675208013867im … -0.015223308343740211 + 0.04606175627700847im 0.014383440648838293 + 0.007227238719426335im; -0.0019149311510818813 + 0.08201060642321484im 0.08003539535962687 + 0.06093290136071238im … 0.09912386481463495 - 0.04685495127485436im -0.02100556326459345 - 0.045728795211725966im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668721308 -11.1003083967418 … -8.289845772412038 -11.10030839674186; -11.1003083967418 -9.130057825947393 … -9.130057795896102 -11.100308356758823; … ; -8.289845772412038 -9.130057795896102 … -4.1495899216427485 -6.2879561981988195; -11.100308396741859 -11.100308356758827 … -6.28795619819882 -9.111848223577017;;; -11.100308396741802 -9.130057825947391 … -9.130057795896104 -11.100308356758825; -9.130057825947393 -6.903159481981727 … -9.130057827297076 -10.05388382655173; … ; -9.130057795896102 -9.130057827297076 … -5.294353669213903 -7.547399206521211; -11.100308356758823 -10.05388382655173 … -7.547399206521212 -10.053883826551834;;; -8.289845772412336 -6.3076219315163025 … -8.28984578101129 -9.111848193525685; -6.307621931516304 -4.516655665815279 … -7.547399237611043 -7.547399206521444; … ; -8.289845781011289 -7.547399237611042 … -5.76896908358076 -7.547399237611114; -9.111848193525683 -7.547399206521443 … -7.547399237611115 -9.111848224926923;;; … ;;; -5.301031718249321 -6.30762195578851 … -2.549703573275489 -3.8495821793873053; -6.307621955788511 -6.9031594952085555 … -3.329060698545761 -4.878419358630173; … ; -2.5497035732754876 -3.329060698545761 … -1.2567984709020368 -1.8141947460405534; -3.849582179387304 -4.8784193586301745 … -1.814194746040553 -2.714767335322085;;; -8.28984577241204 -9.1300577958961 … -4.149589921642749 -6.287956198198818; -9.130057795896104 -9.130057827297072 … -5.294353669213902 -7.54739920652121; … ; -4.149589921642749 -5.294353669213903 … -1.9094492399147893 -2.89461236785172; -6.287956198198819 -7.547399206521211 … -2.89461236785172 -4.48554275937149;;; -11.10030839674186 -11.100308356758825 … -6.2879561981988195 -9.111848223577013; -11.100308356758823 -10.05388382655173 … -7.547399206521213 -10.053883826551834; … ; -6.287956198198818 -7.547399206521213 … -2.89461236785172 -4.48554275937149; -9.111848223577015 -10.053883826551834 … -4.485542759371491 -6.871104500134764])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668721308 -11.1003083967418 … -8.289845772412038 -11.10030839674186; -11.1003083967418 -9.130057825947393 … -9.130057795896102 -11.100308356758823; … ; -8.289845772412038 -9.130057795896102 … -4.1495899216427485 -6.2879561981988195; -11.100308396741859 -11.100308356758827 … -6.28795619819882 -9.111848223577017;;; -11.100308396741802 -9.130057825947391 … -9.130057795896104 -11.100308356758825; -9.130057825947393 -6.903159481981727 … -9.130057827297076 -10.05388382655173; … ; -9.130057795896102 -9.130057827297076 … -5.294353669213903 -7.547399206521211; -11.100308356758823 -10.05388382655173 … -7.547399206521212 -10.053883826551834;;; -8.289845772412336 -6.3076219315163025 … -8.28984578101129 -9.111848193525685; -6.307621931516304 -4.516655665815279 … -7.547399237611043 -7.547399206521444; … ; -8.289845781011289 -7.547399237611042 … -5.76896908358076 -7.547399237611114; -9.111848193525683 -7.547399206521443 … -7.547399237611115 -9.111848224926923;;; … ;;; -5.301031718249321 -6.30762195578851 … -2.549703573275489 -3.8495821793873053; -6.307621955788511 -6.9031594952085555 … -3.329060698545761 -4.878419358630173; … ; -2.5497035732754876 -3.329060698545761 … -1.2567984709020368 -1.8141947460405534; -3.849582179387304 -4.8784193586301745 … -1.814194746040553 -2.714767335322085;;; -8.28984577241204 -9.1300577958961 … -4.149589921642749 -6.287956198198818; -9.130057795896104 -9.130057827297072 … -5.294353669213902 -7.54739920652121; … ; -4.149589921642749 -5.294353669213903 … -1.9094492399147893 -2.89461236785172; -6.287956198198819 -7.547399206521211 … -2.89461236785172 -4.48554275937149;;; -11.10030839674186 -11.100308356758825 … -6.2879561981988195 -9.111848223577013; -11.100308356758823 -10.05388382655173 … -7.547399206521213 -10.053883826551834; … ; -6.287956198198818 -7.547399206521213 … -2.89461236785172 -4.48554275937149; -9.111848223577015 -10.053883826551834 … -4.485542759371491 -6.871104500134764]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.02856439982331795 - 0.007930602881844426im 0.012633730221717345 - 0.015376296805202555im … -0.08902150223926059 - 0.04519729583075037im -0.03229549454958106 + 0.01980431918483768im; 0.00258060239358561 - 0.04710910198685636im -0.022976973810346524 - 0.01956933872190507im … -0.029304875250065938 + 0.004333452060645478im 0.018090133134665953 - 0.01354323373984374im; … ; -0.04245654220613576 - 0.02389404316142464im -0.01617882707521795 + 0.021627153638707576im … 0.019658881977052733 - 0.006915870486033672im 0.0021428332901676696 - 0.06094605361889732im; -0.02138995656613516 + 0.02665970079094987im 0.024926260614385673 + 0.005734530644689489im … -0.03162493660365538 - 0.1129884034770299im -0.08873992508897954 - 0.04712608968112261im;;; 0.007140534012345627 - 0.09695842587373993im -0.03163909441799989 - 0.10421704618503666im … -0.026766077668684187 + 0.016446440374518145im -0.03158403809989239 - 0.03406997279109672im; -0.06936355645049365 + 0.04110557968730908im -0.029683511023122916 - 0.012718221429870573im … -0.03509741130691029 - 0.022411775403974404im -0.09339213521211699 + 0.0005670153493806682im; … ; -0.0745137024986206 + 0.001327119845603443im 0.03362313353630146 + 0.01585162669255008im … 0.012332900327216026 - 0.07710823335397758im -0.06868285214461126 - 0.10366647858449259im; 0.03726348613831455 + 0.007677147292901004im 0.08014620668464426 - 0.10186272965191898im … -0.08402596343017374 - 0.04158091073107222im -0.08099821203041466 + 0.0050262828694117925im;;; -0.07325296060430224 - 0.09586868399287023im -0.07867461002538186 - 0.048266933319485644im … 0.0013954590531750632 - 0.022496742307813365im -0.04379130332646115 - 0.051416186940060706im; -0.02625679015470177 + 0.0065252320376734535im 0.026016508370064827 - 0.03243814240200472im … -0.07203675109021339 + 0.013541936818378286im -0.06220239177863359 + 0.09660321603544024im; … ; 0.04153504766372637 + 0.01331030654083716im 0.07019698712449225 - 0.09147771953671863im … -0.037728609933295444 - 0.052416671093131015im -0.058130294852225636 - 0.0058454722545292145im; 0.08002738118770879 - 0.13510178921236576im -0.04400105185244052 - 0.187860151259795im … -0.02629552676524073 + 0.010366436645084208im 0.031714943291955545 - 0.0026367759234551917im;;; … ;;; -0.013375720520059805 - 0.0039936717164901795im -0.008222675809882323 + 0.08473098561907183im … -0.04916378873474542 - 0.017699463147965985im 0.061392937033277216 - 0.0010301988105142577im; -0.02274931248927608 + 0.0028583874138716683im 0.02786553618500972 + 0.045967675151090834im … 0.03854766870943414 + 0.01807748293012im 0.046609348362627936 - 0.05875129213053931im; … ; 0.1052541165677732 + 0.09010663517973999im 0.035083393861567495 - 0.01474259944869584im … -0.033694469307053984 - 0.013701840581228517im -0.0010435524134577885 + 0.1446228473423975im; 0.05083172860979914 - 0.01765931913438068im -0.04331381142223806 + 0.023107392619677144im … -0.023217565907813247 - 0.06864806896243232im 0.060681966001454375 + 0.046386759240446204im;;; -0.006539090028099923 + 0.05699405036644058im 0.08632904736940115 + 0.07698073772134953im … 0.0784441395586805 - 0.016353973844383113im 0.02570533482801215 - 0.05926020316598995im; -0.022429803327936617 + 0.023887104429213324im 0.031068302342083694 + 0.007662941130103304im … 0.09615562315295657 - 0.1075548867470739im -0.03375021842689207 - 0.11658557654353437im; … ; 0.009834240791236293 - 0.005353777190008337im -0.055480649199716355 + 0.04795682441219807im … -0.03951370267146622 + 0.019701208421952762im 0.07004466693398305 + 0.06528236502724424im; -0.06572742521942261 + 0.06184117441085868im 0.006449787723797885 + 0.1510284034405719im … 0.004022479061230771 + 0.0056685563070860145im 0.03304757410164411 - 0.023621299282798058im;;; 0.020160539752306084 + 0.029012856997390236im 0.012079890460018231 - 0.006464308826026499im … 0.06300993796382257 - 0.1622816244702312im -0.04891059769424166 - 0.11298002715175978im; -0.014135300216803662 + 0.020721074689902703im -0.019683443595450212 + 0.01505267810430558im … -0.03599658274075317 - 0.15721925857669572im -0.0747799731021385 - 0.01327871784699651im; … ; -0.05192538618050946 + 0.057632750696175954im -0.002767117583002892 + 0.08954675208013867im … -0.015223308343740211 + 0.04606175627700847im 0.014383440648838293 + 0.007227238719426335im; -0.0019149311510818813 + 0.08201060642321484im 0.08003539535962687 + 0.06093290136071238im … 0.09912386481463495 - 0.04685495127485436im -0.02100556326459345 - 0.045728795211725966im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668721308 -11.1003083967418 … -8.289845772412038 -11.10030839674186; -11.1003083967418 -9.130057825947393 … -9.130057795896102 -11.100308356758823; … ; -8.289845772412038 -9.130057795896102 … -4.1495899216427485 -6.2879561981988195; -11.100308396741859 -11.100308356758827 … -6.28795619819882 -9.111848223577017;;; -11.100308396741802 -9.130057825947391 … -9.130057795896104 -11.100308356758825; -9.130057825947393 -6.903159481981727 … -9.130057827297076 -10.05388382655173; … ; -9.130057795896102 -9.130057827297076 … -5.294353669213903 -7.547399206521211; -11.100308356758823 -10.05388382655173 … -7.547399206521212 -10.053883826551834;;; -8.289845772412336 -6.3076219315163025 … -8.28984578101129 -9.111848193525685; -6.307621931516304 -4.516655665815279 … -7.547399237611043 -7.547399206521444; … ; -8.289845781011289 -7.547399237611042 … -5.76896908358076 -7.547399237611114; -9.111848193525683 -7.547399206521443 … -7.547399237611115 -9.111848224926923;;; … ;;; -5.301031718249321 -6.30762195578851 … -2.549703573275489 -3.8495821793873053; -6.307621955788511 -6.9031594952085555 … -3.329060698545761 -4.878419358630173; … ; -2.5497035732754876 -3.329060698545761 … -1.2567984709020368 -1.8141947460405534; -3.849582179387304 -4.8784193586301745 … -1.814194746040553 -2.714767335322085;;; -8.28984577241204 -9.1300577958961 … -4.149589921642749 -6.287956198198818; -9.130057795896104 -9.130057827297072 … -5.294353669213902 -7.54739920652121; … ; -4.149589921642749 -5.294353669213903 … -1.9094492399147893 -2.89461236785172; -6.287956198198819 -7.547399206521211 … -2.89461236785172 -4.48554275937149;;; -11.10030839674186 -11.100308356758825 … -6.2879561981988195 -9.111848223577013; -11.100308356758823 -10.05388382655173 … -7.547399206521213 -10.053883826551834; … ; -6.287956198198818 -7.547399206521213 … -2.89461236785172 -4.48554275937149; -9.111848223577015 -10.053883826551834 … -4.485542759371491 -6.871104500134764])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668721308 -11.1003083967418 … -8.289845772412038 -11.10030839674186; -11.1003083967418 -9.130057825947393 … -9.130057795896102 -11.100308356758823; … ; -8.289845772412038 -9.130057795896102 … -4.1495899216427485 -6.2879561981988195; -11.100308396741859 -11.100308356758827 … -6.28795619819882 -9.111848223577017;;; -11.100308396741802 -9.130057825947391 … -9.130057795896104 -11.100308356758825; -9.130057825947393 -6.903159481981727 … -9.130057827297076 -10.05388382655173; … ; -9.130057795896102 -9.130057827297076 … -5.294353669213903 -7.547399206521211; -11.100308356758823 -10.05388382655173 … -7.547399206521212 -10.053883826551834;;; -8.289845772412336 -6.3076219315163025 … -8.28984578101129 -9.111848193525685; -6.307621931516304 -4.516655665815279 … -7.547399237611043 -7.547399206521444; … ; -8.289845781011289 -7.547399237611042 … -5.76896908358076 -7.547399237611114; -9.111848193525683 -7.547399206521443 … -7.547399237611115 -9.111848224926923;;; … ;;; -5.301031718249321 -6.30762195578851 … -2.549703573275489 -3.8495821793873053; -6.307621955788511 -6.9031594952085555 … -3.329060698545761 -4.878419358630173; … ; -2.5497035732754876 -3.329060698545761 … -1.2567984709020368 -1.8141947460405534; -3.849582179387304 -4.8784193586301745 … -1.814194746040553 -2.714767335322085;;; -8.28984577241204 -9.1300577958961 … -4.149589921642749 -6.287956198198818; -9.130057795896104 -9.130057827297072 … -5.294353669213902 -7.54739920652121; … ; -4.149589921642749 -5.294353669213903 … -1.9094492399147893 -2.89461236785172; -6.287956198198819 -7.547399206521211 … -2.89461236785172 -4.48554275937149;;; -11.10030839674186 -11.100308356758825 … -6.2879561981988195 -9.111848223577013; -11.100308356758823 -10.05388382655173 … -7.547399206521213 -10.053883826551834; … ; -6.287956198198818 -7.547399206521213 … -2.89461236785172 -4.48554275937149; -9.111848223577015 -10.053883826551834 … -4.485542759371491 -6.871104500134764]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.02856439982331795 - 0.007930602881844426im 0.012633730221717345 - 0.015376296805202555im … -0.08902150223926059 - 0.04519729583075037im -0.03229549454958106 + 0.01980431918483768im; 0.00258060239358561 - 0.04710910198685636im -0.022976973810346524 - 0.01956933872190507im … -0.029304875250065938 + 0.004333452060645478im 0.018090133134665953 - 0.01354323373984374im; … ; -0.04245654220613576 - 0.02389404316142464im -0.01617882707521795 + 0.021627153638707576im … 0.019658881977052733 - 0.006915870486033672im 0.0021428332901676696 - 0.06094605361889732im; -0.02138995656613516 + 0.02665970079094987im 0.024926260614385673 + 0.005734530644689489im … -0.03162493660365538 - 0.1129884034770299im -0.08873992508897954 - 0.04712608968112261im;;; 0.007140534012345627 - 0.09695842587373993im -0.03163909441799989 - 0.10421704618503666im … -0.026766077668684187 + 0.016446440374518145im -0.03158403809989239 - 0.03406997279109672im; -0.06936355645049365 + 0.04110557968730908im -0.029683511023122916 - 0.012718221429870573im … -0.03509741130691029 - 0.022411775403974404im -0.09339213521211699 + 0.0005670153493806682im; … ; -0.0745137024986206 + 0.001327119845603443im 0.03362313353630146 + 0.01585162669255008im … 0.012332900327216026 - 0.07710823335397758im -0.06868285214461126 - 0.10366647858449259im; 0.03726348613831455 + 0.007677147292901004im 0.08014620668464426 - 0.10186272965191898im … -0.08402596343017374 - 0.04158091073107222im -0.08099821203041466 + 0.0050262828694117925im;;; -0.07325296060430224 - 0.09586868399287023im -0.07867461002538186 - 0.048266933319485644im … 0.0013954590531750632 - 0.022496742307813365im -0.04379130332646115 - 0.051416186940060706im; -0.02625679015470177 + 0.0065252320376734535im 0.026016508370064827 - 0.03243814240200472im … -0.07203675109021339 + 0.013541936818378286im -0.06220239177863359 + 0.09660321603544024im; … ; 0.04153504766372637 + 0.01331030654083716im 0.07019698712449225 - 0.09147771953671863im … -0.037728609933295444 - 0.052416671093131015im -0.058130294852225636 - 0.0058454722545292145im; 0.08002738118770879 - 0.13510178921236576im -0.04400105185244052 - 0.187860151259795im … -0.02629552676524073 + 0.010366436645084208im 0.031714943291955545 - 0.0026367759234551917im;;; … ;;; -0.013375720520059805 - 0.0039936717164901795im -0.008222675809882323 + 0.08473098561907183im … -0.04916378873474542 - 0.017699463147965985im 0.061392937033277216 - 0.0010301988105142577im; -0.02274931248927608 + 0.0028583874138716683im 0.02786553618500972 + 0.045967675151090834im … 0.03854766870943414 + 0.01807748293012im 0.046609348362627936 - 0.05875129213053931im; … ; 0.1052541165677732 + 0.09010663517973999im 0.035083393861567495 - 0.01474259944869584im … -0.033694469307053984 - 0.013701840581228517im -0.0010435524134577885 + 0.1446228473423975im; 0.05083172860979914 - 0.01765931913438068im -0.04331381142223806 + 0.023107392619677144im … -0.023217565907813247 - 0.06864806896243232im 0.060681966001454375 + 0.046386759240446204im;;; -0.006539090028099923 + 0.05699405036644058im 0.08632904736940115 + 0.07698073772134953im … 0.0784441395586805 - 0.016353973844383113im 0.02570533482801215 - 0.05926020316598995im; -0.022429803327936617 + 0.023887104429213324im 0.031068302342083694 + 0.007662941130103304im … 0.09615562315295657 - 0.1075548867470739im -0.03375021842689207 - 0.11658557654353437im; … ; 0.009834240791236293 - 0.005353777190008337im -0.055480649199716355 + 0.04795682441219807im … -0.03951370267146622 + 0.019701208421952762im 0.07004466693398305 + 0.06528236502724424im; -0.06572742521942261 + 0.06184117441085868im 0.006449787723797885 + 0.1510284034405719im … 0.004022479061230771 + 0.0056685563070860145im 0.03304757410164411 - 0.023621299282798058im;;; 0.020160539752306084 + 0.029012856997390236im 0.012079890460018231 - 0.006464308826026499im … 0.06300993796382257 - 0.1622816244702312im -0.04891059769424166 - 0.11298002715175978im; -0.014135300216803662 + 0.020721074689902703im -0.019683443595450212 + 0.01505267810430558im … -0.03599658274075317 - 0.15721925857669572im -0.0747799731021385 - 0.01327871784699651im; … ; -0.05192538618050946 + 0.057632750696175954im -0.002767117583002892 + 0.08954675208013867im … -0.015223308343740211 + 0.04606175627700847im 0.014383440648838293 + 0.007227238719426335im; -0.0019149311510818813 + 0.08201060642321484im 0.08003539535962687 + 0.06093290136071238im … 0.09912386481463495 - 0.04685495127485436im -0.02100556326459345 - 0.045728795211725966im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668721308 -11.1003083967418 … -8.289845772412038 -11.10030839674186; -11.1003083967418 -9.130057825947393 … -9.130057795896102 -11.100308356758823; … ; -8.289845772412038 -9.130057795896102 … -4.1495899216427485 -6.2879561981988195; -11.100308396741859 -11.100308356758827 … -6.28795619819882 -9.111848223577017;;; -11.100308396741802 -9.130057825947391 … -9.130057795896104 -11.100308356758825; -9.130057825947393 -6.903159481981727 … -9.130057827297076 -10.05388382655173; … ; -9.130057795896102 -9.130057827297076 … -5.294353669213903 -7.547399206521211; -11.100308356758823 -10.05388382655173 … -7.547399206521212 -10.053883826551834;;; -8.289845772412336 -6.3076219315163025 … -8.28984578101129 -9.111848193525685; -6.307621931516304 -4.516655665815279 … -7.547399237611043 -7.547399206521444; … ; -8.289845781011289 -7.547399237611042 … -5.76896908358076 -7.547399237611114; -9.111848193525683 -7.547399206521443 … -7.547399237611115 -9.111848224926923;;; … ;;; -5.301031718249321 -6.30762195578851 … -2.549703573275489 -3.8495821793873053; -6.307621955788511 -6.9031594952085555 … -3.329060698545761 -4.878419358630173; … ; -2.5497035732754876 -3.329060698545761 … -1.2567984709020368 -1.8141947460405534; -3.849582179387304 -4.8784193586301745 … -1.814194746040553 -2.714767335322085;;; -8.28984577241204 -9.1300577958961 … -4.149589921642749 -6.287956198198818; -9.130057795896104 -9.130057827297072 … -5.294353669213902 -7.54739920652121; … ; -4.149589921642749 -5.294353669213903 … -1.9094492399147893 -2.89461236785172; -6.287956198198819 -7.547399206521211 … -2.89461236785172 -4.48554275937149;;; -11.10030839674186 -11.100308356758825 … -6.2879561981988195 -9.111848223577013; -11.100308356758823 -10.05388382655173 … -7.547399206521213 -10.053883826551834; … ; -6.287956198198818 -7.547399206521213 … -2.89461236785172 -4.48554275937149; -9.111848223577015 -10.053883826551834 … -4.485542759371491 -6.871104500134764])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668721308 -11.1003083967418 … -8.289845772412038 -11.10030839674186; -11.1003083967418 -9.130057825947393 … -9.130057795896102 -11.100308356758823; … ; -8.289845772412038 -9.130057795896102 … -4.1495899216427485 -6.2879561981988195; -11.100308396741859 -11.100308356758827 … -6.28795619819882 -9.111848223577017;;; -11.100308396741802 -9.130057825947391 … -9.130057795896104 -11.100308356758825; -9.130057825947393 -6.903159481981727 … -9.130057827297076 -10.05388382655173; … ; -9.130057795896102 -9.130057827297076 … -5.294353669213903 -7.547399206521211; -11.100308356758823 -10.05388382655173 … -7.547399206521212 -10.053883826551834;;; -8.289845772412336 -6.3076219315163025 … -8.28984578101129 -9.111848193525685; -6.307621931516304 -4.516655665815279 … -7.547399237611043 -7.547399206521444; … ; -8.289845781011289 -7.547399237611042 … -5.76896908358076 -7.547399237611114; -9.111848193525683 -7.547399206521443 … -7.547399237611115 -9.111848224926923;;; … ;;; -5.301031718249321 -6.30762195578851 … -2.549703573275489 -3.8495821793873053; -6.307621955788511 -6.9031594952085555 … -3.329060698545761 -4.878419358630173; … ; -2.5497035732754876 -3.329060698545761 … -1.2567984709020368 -1.8141947460405534; -3.849582179387304 -4.8784193586301745 … -1.814194746040553 -2.714767335322085;;; -8.28984577241204 -9.1300577958961 … -4.149589921642749 -6.287956198198818; -9.130057795896104 -9.130057827297072 … -5.294353669213902 -7.54739920652121; … ; -4.149589921642749 -5.294353669213903 … -1.9094492399147893 -2.89461236785172; -6.287956198198819 -7.547399206521211 … -2.89461236785172 -4.48554275937149;;; -11.10030839674186 -11.100308356758825 … -6.2879561981988195 -9.111848223577013; -11.100308356758823 -10.05388382655173 … -7.547399206521213 -10.053883826551834; … ; -6.287956198198818 -7.547399206521213 … -2.89461236785172 -4.48554275937149; -9.111848223577015 -10.053883826551834 … -4.485542759371491 -6.871104500134764]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.02856439982331795 - 0.007930602881844426im 0.012633730221717345 - 0.015376296805202555im … -0.08902150223926059 - 0.04519729583075037im -0.03229549454958106 + 0.01980431918483768im; 0.00258060239358561 - 0.04710910198685636im -0.022976973810346524 - 0.01956933872190507im … -0.029304875250065938 + 0.004333452060645478im 0.018090133134665953 - 0.01354323373984374im; … ; -0.04245654220613576 - 0.02389404316142464im -0.01617882707521795 + 0.021627153638707576im … 0.019658881977052733 - 0.006915870486033672im 0.0021428332901676696 - 0.06094605361889732im; -0.02138995656613516 + 0.02665970079094987im 0.024926260614385673 + 0.005734530644689489im … -0.03162493660365538 - 0.1129884034770299im -0.08873992508897954 - 0.04712608968112261im;;; 0.007140534012345627 - 0.09695842587373993im -0.03163909441799989 - 0.10421704618503666im … -0.026766077668684187 + 0.016446440374518145im -0.03158403809989239 - 0.03406997279109672im; -0.06936355645049365 + 0.04110557968730908im -0.029683511023122916 - 0.012718221429870573im … -0.03509741130691029 - 0.022411775403974404im -0.09339213521211699 + 0.0005670153493806682im; … ; -0.0745137024986206 + 0.001327119845603443im 0.03362313353630146 + 0.01585162669255008im … 0.012332900327216026 - 0.07710823335397758im -0.06868285214461126 - 0.10366647858449259im; 0.03726348613831455 + 0.007677147292901004im 0.08014620668464426 - 0.10186272965191898im … -0.08402596343017374 - 0.04158091073107222im -0.08099821203041466 + 0.0050262828694117925im;;; -0.07325296060430224 - 0.09586868399287023im -0.07867461002538186 - 0.048266933319485644im … 0.0013954590531750632 - 0.022496742307813365im -0.04379130332646115 - 0.051416186940060706im; -0.02625679015470177 + 0.0065252320376734535im 0.026016508370064827 - 0.03243814240200472im … -0.07203675109021339 + 0.013541936818378286im -0.06220239177863359 + 0.09660321603544024im; … ; 0.04153504766372637 + 0.01331030654083716im 0.07019698712449225 - 0.09147771953671863im … -0.037728609933295444 - 0.052416671093131015im -0.058130294852225636 - 0.0058454722545292145im; 0.08002738118770879 - 0.13510178921236576im -0.04400105185244052 - 0.187860151259795im … -0.02629552676524073 + 0.010366436645084208im 0.031714943291955545 - 0.0026367759234551917im;;; … ;;; -0.013375720520059805 - 0.0039936717164901795im -0.008222675809882323 + 0.08473098561907183im … -0.04916378873474542 - 0.017699463147965985im 0.061392937033277216 - 0.0010301988105142577im; -0.02274931248927608 + 0.0028583874138716683im 0.02786553618500972 + 0.045967675151090834im … 0.03854766870943414 + 0.01807748293012im 0.046609348362627936 - 0.05875129213053931im; … ; 0.1052541165677732 + 0.09010663517973999im 0.035083393861567495 - 0.01474259944869584im … -0.033694469307053984 - 0.013701840581228517im -0.0010435524134577885 + 0.1446228473423975im; 0.05083172860979914 - 0.01765931913438068im -0.04331381142223806 + 0.023107392619677144im … -0.023217565907813247 - 0.06864806896243232im 0.060681966001454375 + 0.046386759240446204im;;; -0.006539090028099923 + 0.05699405036644058im 0.08632904736940115 + 0.07698073772134953im … 0.0784441395586805 - 0.016353973844383113im 0.02570533482801215 - 0.05926020316598995im; -0.022429803327936617 + 0.023887104429213324im 0.031068302342083694 + 0.007662941130103304im … 0.09615562315295657 - 0.1075548867470739im -0.03375021842689207 - 0.11658557654353437im; … ; 0.009834240791236293 - 0.005353777190008337im -0.055480649199716355 + 0.04795682441219807im … -0.03951370267146622 + 0.019701208421952762im 0.07004466693398305 + 0.06528236502724424im; -0.06572742521942261 + 0.06184117441085868im 0.006449787723797885 + 0.1510284034405719im … 0.004022479061230771 + 0.0056685563070860145im 0.03304757410164411 - 0.023621299282798058im;;; 0.020160539752306084 + 0.029012856997390236im 0.012079890460018231 - 0.006464308826026499im … 0.06300993796382257 - 0.1622816244702312im -0.04891059769424166 - 0.11298002715175978im; -0.014135300216803662 + 0.020721074689902703im -0.019683443595450212 + 0.01505267810430558im … -0.03599658274075317 - 0.15721925857669572im -0.0747799731021385 - 0.01327871784699651im; … ; -0.05192538618050946 + 0.057632750696175954im -0.002767117583002892 + 0.08954675208013867im … -0.015223308343740211 + 0.04606175627700847im 0.014383440648838293 + 0.007227238719426335im; -0.0019149311510818813 + 0.08201060642321484im 0.08003539535962687 + 0.06093290136071238im … 0.09912386481463495 - 0.04685495127485436im -0.02100556326459345 - 0.045728795211725966im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488506), converged = true, ρ = [7.589784542136981e-5 0.0011262712728544913 … 0.006697037550156548 0.0011262712728545047; 0.001126271272854498 0.005274334457436325 … 0.005274334457436372 0.0011262712728545047; … ; 0.006697037550156564 0.005274334457436365 … 0.02324475419115986 0.01225898682533817; 0.0011262712728545114 0.001126271272854515 … 0.012258986825338174 0.0037700086299498553;;; 0.001126271272854487 0.005274334457436333 … 0.005274334457436364 0.0011262712728545062; 0.00527433445743634 0.014620065304839893 … 0.005274334457436375 0.0025880808748915568; … ; 0.005274334457436377 0.005274334457436368 … 0.018107686646256217 0.00892200304483478; 0.001126271272854511 0.002588080874891567 … 0.008922003044834785 0.0025880808748915836;;; 0.00669703755015651 0.016412109101722614 … 0.006697037550156541 0.003770008629949825; 0.016412109101722618 0.03127783931609081 … 0.008922003044834766 0.00892200304483474; … ; 0.006697037550156557 0.008922003044834762 … 0.01647675635956507 0.008922003044834778; 0.003770008629949832 0.008922003044834747 … 0.00892200304483478 0.0037700086299498523;;; … ;;; 0.019853839853523163 0.016412109101722624 … 0.03715667363576893 0.02719080068669602; 0.016412109101722624 0.014620065304839905 … 0.0323012721265662 0.02232210093184058; … ; 0.03715667363576894 0.032301272126566194 … 0.04629698070149375 0.04263658273151142; 0.027190800686696014 0.022322100931840585 … 0.04263658273151142 0.03477222914209438;;; 0.006697037550156519 0.005274334457436341 … 0.023244754191159834 0.01225898682533814; 0.005274334457436345 0.005274334457436332 … 0.018107686646256196 0.008922003044834748; … ; 0.02324475419115985 0.018107686646256192 … 0.04037111033564522 0.031491603811478655; 0.012258986825338143 0.008922003044834757 … 0.031491603811478655 0.02004716343283689;;; 0.0011262712728544887 0.0011262712728544962 … 0.01225898682533815 0.003770008629949832; 0.001126271272854503 0.0025880808748915385 … 0.008922003044834773 0.002588080874891563; … ; 0.012258986825338162 0.008922003044834766 … 0.031491603811478655 0.020047163432836895; 0.003770008629949834 0.0025880808748915724 … 0.020047163432836898 0.008952603496849709;;;;], eigenvalues = [[-0.17836835653982056, 0.26249194499070305, 0.2624919449907031, 0.2624919449907031, 0.3546921481673298, 0.3546921481673298, 0.35469214816749645], [-0.12755037617974, 0.06475320594633184, 0.22545166517346502, 0.225451665173465, 0.3219776496109551, 0.38922276908457776, 0.3892227690845776], [-0.10818729216563841, 0.07755003473362095, 0.17278328011416197, 0.17278328011416186, 0.2843518536198687, 0.3305476484332424, 0.5267232426394848], [-0.05777325374502348, 0.01272478220486377, 0.09766073750107494, 0.18417825332913942, 0.3152284179599521, 0.4720312185576585, 0.4979135176550297]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930528593, n_iter = 10, ψ = Matrix{ComplexF64}[[0.13135603879286167 + 0.9404516352791106im -1.763047647112209e-13 - 8.309609424586635e-14im … 5.22410271370079e-12 + 1.2669448271804659e-12im 1.2911317356638067e-8 + 3.2402940495126966e-9im; 0.07929745607501718 + 0.059860760540361165im 0.08561990234837319 - 0.411178433519117im … 0.31841258471798073 + 0.11211686947881294im 0.14105872488603963 + 0.0685595940869308im; … ; -0.0016265003559002022 - 0.011645029292305393im 0.021186062736866244 + 0.010868312400543572im … 0.02165326961093078 - 0.07627128860536418im -0.03088891821253878 - 0.008239617287318115im; 0.07929745607502858 + 0.05986076054037385im 0.1209717934954338 + 0.34468013086723426im … -0.005565298005277265 - 0.46874255427865624im -0.0910400687439174 + 0.20290854593324137im], [-0.5681909189148859 + 0.7251466584100587im -0.05003090047163888 + 0.19677001975599845im … 2.6973358108518718e-11 - 9.91145456325176e-11im 1.5056685603189156e-10 - 1.4126743720933755e-10im; 0.007535752372141069 + 0.062095669439405164im -0.004604281469979061 - 0.007743953414182578im … -1.306878591881282e-10 + 8.529063749833992e-11im 8.508481313649288e-11 - 1.2403499618838302e-10im; … ; 0.003048240921854835 - 0.003890279912867477im 0.020832027596216104 - 0.0819317350482348im … -0.024897122797419565 - 0.09380128665891102im -0.041085045306102144 - 0.0015249106556045im; 0.014084844025668708 + 0.1160611144755376im 0.05116700132401907 + 0.08605791743631629im … -0.3711385826566076 - 0.21544512490407075im -0.13323008075450452 + 0.12369409533668574im], [0.72881614408132 - 0.5704723398145595im -2.4539520686146365e-14 + 5.078124987791179e-15im … 3.149506744559332e-11 + 3.0842774895515566e-11im 1.6787736515853027e-8 - 1.4162451254508904e-8im; 0.00829083688814153 - 0.06803037820472274im -0.026195928896638868 + 0.04514708351785577im … 0.025501070597783768 + 0.004863855259174349im -0.004742614718972327 + 0.005384223952665622im; … ; -0.008342994075796011 + 0.006530381345298518im -2.3988074791645774e-14 + 3.991203835614543e-14im … 2.766233832094916e-10 + 2.85575710742636e-10im 0.016369425948587278 + 0.051679113577631886im; 0.01938510585108628 - 0.15906428993576596im 0.1471691657562727 - 0.25363706871650643im … 0.3655057604099216 + 0.06971342977453203im 0.13706258786632022 + 0.07376287800868225im], [-0.5269383531274586 - 0.601045206981911im 6.710003895671782e-15 - 5.380694905139015e-15im … -0.05203650950083635 + 0.17403056869791822im 7.456675115937874e-7 - 7.28413083079876e-6im; -0.39101466721613404 - 0.025689086102924055im 0.27317871710352687 + 0.5574321529942468im … -0.08643028061465434 - 0.1601638702048867im 2.14966901362272e-6 + 2.6846116459922808e-6im; … ; 0.00873556296425193 + 0.009964103426484109im 8.220237295129148e-5 - 0.0002402017914245809im … 0.0037382042587492076 - 0.012502439235284801im 0.0460957105551881 - 0.0005261586472195629im; -0.06694710633888579 - 0.004398326004809881im -0.0023381967383580846 - 0.004771184431199211im … -0.06809854356406254 - 0.12619106554578757im 0.3294001003927707 - 0.3369752867551986im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653982056, 0.26249194499070305, 0.2624919449907031, 0.2624919449907031, 0.3546921481673298, 0.3546921481673298, 0.35469214816749645], [-0.12755037617974, 0.06475320594633184, 0.22545166517346502, 0.225451665173465, 0.3219776496109551, 0.38922276908457776, 0.3892227690845776], [-0.10818729216563841, 0.07755003473362095, 0.17278328011416197, 0.17278328011416186, 0.2843518536198687, 0.3305476484332424, 0.5267232426394848], [-0.05777325374502348, 0.01272478220486377, 0.09766073750107494, 0.18417825332913942, 0.3152284179599521, 0.4720312185576585, 0.4979135176550297]], X = [[0.13135603879286167 + 0.9404516352791106im -1.763047647112209e-13 - 8.309609424586635e-14im … 5.22410271370079e-12 + 1.2669448271804659e-12im 1.2911317356638067e-8 + 3.2402940495126966e-9im; 0.07929745607501718 + 0.059860760540361165im 0.08561990234837319 - 0.411178433519117im … 0.31841258471798073 + 0.11211686947881294im 0.14105872488603963 + 0.0685595940869308im; … ; -0.0016265003559002022 - 0.011645029292305393im 0.021186062736866244 + 0.010868312400543572im … 0.02165326961093078 - 0.07627128860536418im -0.03088891821253878 - 0.008239617287318115im; 0.07929745607502858 + 0.05986076054037385im 0.1209717934954338 + 0.34468013086723426im … -0.005565298005277265 - 0.46874255427865624im -0.0910400687439174 + 0.20290854593324137im], [-0.5681909189148859 + 0.7251466584100587im -0.05003090047163888 + 0.19677001975599845im … 2.6973358108518718e-11 - 9.91145456325176e-11im 1.5056685603189156e-10 - 1.4126743720933755e-10im; 0.007535752372141069 + 0.062095669439405164im -0.004604281469979061 - 0.007743953414182578im … -1.306878591881282e-10 + 8.529063749833992e-11im 8.508481313649288e-11 - 1.2403499618838302e-10im; … ; 0.003048240921854835 - 0.003890279912867477im 0.020832027596216104 - 0.0819317350482348im … -0.024897122797419565 - 0.09380128665891102im -0.041085045306102144 - 0.0015249106556045im; 0.014084844025668708 + 0.1160611144755376im 0.05116700132401907 + 0.08605791743631629im … -0.3711385826566076 - 0.21544512490407075im -0.13323008075450452 + 0.12369409533668574im], [0.72881614408132 - 0.5704723398145595im -2.4539520686146365e-14 + 5.078124987791179e-15im … 3.149506744559332e-11 + 3.0842774895515566e-11im 1.6787736515853027e-8 - 1.4162451254508904e-8im; 0.00829083688814153 - 0.06803037820472274im -0.026195928896638868 + 0.04514708351785577im … 0.025501070597783768 + 0.004863855259174349im -0.004742614718972327 + 0.005384223952665622im; … ; -0.008342994075796011 + 0.006530381345298518im -2.3988074791645774e-14 + 3.991203835614543e-14im … 2.766233832094916e-10 + 2.85575710742636e-10im 0.016369425948587278 + 0.051679113577631886im; 0.01938510585108628 - 0.15906428993576596im 0.1471691657562727 - 0.25363706871650643im … 0.3655057604099216 + 0.06971342977453203im 0.13706258786632022 + 0.07376287800868225im], [-0.5269383531274586 - 0.601045206981911im 6.710003895671782e-15 - 5.380694905139015e-15im … -0.05203650950083635 + 0.17403056869791822im 7.456675115937874e-7 - 7.28413083079876e-6im; -0.39101466721613404 - 0.025689086102924055im 0.27317871710352687 + 0.5574321529942468im … -0.08643028061465434 - 0.1601638702048867im 2.14966901362272e-6 + 2.6846116459922808e-6im; … ; 0.00873556296425193 + 0.009964103426484109im 8.220237295129148e-5 - 0.0002402017914245809im … 0.0037382042587492076 - 0.012502439235284801im 0.0460957105551881 - 0.0005261586472195629im; -0.06694710633888579 - 0.004398326004809881im -0.0023381967383580846 - 0.004771184431199211im … -0.06809854356406254 - 0.12619106554578757im 0.3294001003927707 - 0.3369752867551986im]], residual_norms = [[3.1440796604613813e-12, 4.975698572143292e-12, 3.0063549743964777e-12, 2.5408700738310854e-12, 4.20847175662906e-11, 1.2227152629817643e-10, 3.0201213547891884e-7], [3.4248887639144312e-12, 3.265419921962292e-12, 4.767028368915032e-12, 4.396241385351956e-12, 5.912072725862427e-10, 1.3813839629094811e-8, 1.3975884543287139e-8], [1.19712001846708e-12, 1.9460403448409515e-12, 2.9215685776159026e-12, 3.2343506319244365e-12, 8.572174541830137e-11, 2.5241930406301417e-9, 1.7650828813474532e-6], [1.0199295343598322e-12, 1.1593344124066215e-12, 1.067578994435493e-12, 2.6732735983551437e-12, 4.801600060239179e-10, 2.4962421768767134e-5, 1.1116754215175546e-5]], n_iter = [4, 3, 3, 3], converged = 1, n_matvec = 115)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21070750894933774, 0.027630623347714555, 0.002313985978278786, 0.0002563891900871079, 9.254309822973544e-6, 8.807299625476622e-7, 3.842014001041057e-8, 3.1716187319640793e-9, 1.8624459048551513e-10, 4.0247025589566925e-11], history_Etot = [-7.905256074340113, -7.910544213072624, -7.910593456259591, -7.910594393323057, -7.910594396442597, -7.910594396488416, -7.910594396488504, -7.910594396488506, -7.9105943964885075, -7.910594396488506], occupation_threshold = 1.0e-6, runtime_ns = 0x000000009e1d6c89)