Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#783"{DFTK.var"#anderson#782#784"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668725252 -11.10030839674273 … -8.289845772412782 -11.10030839674279; -11.10030839674273 -9.13005782594813 … -9.130057795896837 -11.100308356759752; … ; -8.289845772412782 -9.130057795896837 … -4.149589921643699 -6.287956198199661; -11.100308396742788 -11.100308356759754 … -6.2879561981996615 -9.111848223577718;;; -11.100308396742731 -9.130057825948128 … -9.130057795896839 -11.100308356759754; -9.13005782594813 -6.90315948198253 … -9.130057827297811 -10.053883826552466; … ; -9.130057795896837 -9.130057827297811 … -5.294353669214784 -7.547399206521979; -11.100308356759752 -10.053883826552466 … -7.5473992065219795 -10.05388382655257;;; -8.289845772413079 -6.30762193151713 … -8.289845781012033 -9.111848193526388; -6.307621931517132 -4.516655665816198 … -7.547399237611811 -7.547399206522211; … ; -8.289845781012032 -7.54739923761181 … -5.7689690835816085 -7.547399237611882; -9.111848193526386 -7.54739920652221 … -7.547399237611883 -9.111848224927625;;; … ;;; -5.301031718250204 -6.307621955789338 … -2.549703573276452 -3.849582179388257; -6.3076219557893385 -6.9031594952093585 … -3.3290606985467113 -4.87841935863107; … ; -2.5497035732764513 -3.329060698546712 … -1.2567984709028488 -1.8141947460414756; -3.849582179388256 -4.878419358631072 … -1.8141947460414751 -2.71476733532306;;; -8.289845772412782 -9.130057795896837 … -4.1495899216437 -6.28795619819966; -9.130057795896839 -9.13005782729781 … -5.294353669214783 -7.547399206521978; … ; -4.1495899216437 -5.294353669214784 … -1.9094492399157277 -2.894612367852706; -6.287956198199661 -7.547399206521979 … -2.8946123678527056 -4.4855427593724375;;; -11.10030839674279 -11.100308356759754 … -6.2879561981996615 -9.111848223577717; -11.100308356759752 -10.053883826552466 … -7.54739920652198 -10.053883826552571; … ; -6.28795619819966 -7.54739920652198 … -2.8946123678527056 -4.4855427593724375; -9.111848223577718 -10.05388382655257 … -4.485542759372439 -6.871104500135578])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668725252 -11.10030839674273 … -8.289845772412782 -11.10030839674279; -11.10030839674273 -9.13005782594813 … -9.130057795896837 -11.100308356759752; … ; -8.289845772412782 -9.130057795896837 … -4.149589921643699 -6.287956198199661; -11.100308396742788 -11.100308356759754 … -6.2879561981996615 -9.111848223577718;;; -11.100308396742731 -9.130057825948128 … -9.130057795896839 -11.100308356759754; -9.13005782594813 -6.90315948198253 … -9.130057827297811 -10.053883826552466; … ; -9.130057795896837 -9.130057827297811 … -5.294353669214784 -7.547399206521979; -11.100308356759752 -10.053883826552466 … -7.5473992065219795 -10.05388382655257;;; -8.289845772413079 -6.30762193151713 … -8.289845781012033 -9.111848193526388; -6.307621931517132 -4.516655665816198 … -7.547399237611811 -7.547399206522211; … ; -8.289845781012032 -7.54739923761181 … -5.7689690835816085 -7.547399237611882; -9.111848193526386 -7.54739920652221 … -7.547399237611883 -9.111848224927625;;; … ;;; -5.301031718250204 -6.307621955789338 … -2.549703573276452 -3.849582179388257; -6.3076219557893385 -6.9031594952093585 … -3.3290606985467113 -4.87841935863107; … ; -2.5497035732764513 -3.329060698546712 … -1.2567984709028488 -1.8141947460414756; -3.849582179388256 -4.878419358631072 … -1.8141947460414751 -2.71476733532306;;; -8.289845772412782 -9.130057795896837 … -4.1495899216437 -6.28795619819966; -9.130057795896839 -9.13005782729781 … -5.294353669214783 -7.547399206521978; … ; -4.1495899216437 -5.294353669214784 … -1.9094492399157277 -2.894612367852706; -6.287956198199661 -7.547399206521979 … -2.8946123678527056 -4.4855427593724375;;; -11.10030839674279 -11.100308356759754 … -6.2879561981996615 -9.111848223577717; -11.100308356759752 -10.053883826552466 … -7.54739920652198 -10.053883826552571; … ; -6.28795619819966 -7.54739920652198 … -2.8946123678527056 -4.4855427593724375; -9.111848223577718 -10.05388382655257 … -4.485542759372439 -6.871104500135578]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.020740337152908767 + 0.0014127778549456766im -0.0441492747460776 - 0.012277539960647135im … 0.0737359145976687 - 0.028346657953775112im -0.0061659128207280835 - 0.03184159717631631im; 0.008489940720941488 - 0.010817817535692466im -0.0029693473090340082 - 0.02796361756064078im … -0.004932776809632244 - 0.012945812782057038im 0.002525268918165316 - 0.000711507078581218im; … ; -0.06113035268332262 + 0.003457940352133005im -0.02676132262018594 - 0.0026753381647440025im … -0.005064336344537656 - 0.0012121011850669383im -0.04083375562715498 + 0.0028387309655541946im; -0.022673953496326928 + 0.02226242599419878im -0.021359036775115678 - 0.007577808706044718im … 0.03516163537284255 + 0.051541772087060206im 0.01987666356382345 + 0.004500612220169559im;;; 0.007630537409807417 + 0.04036878614644412im -0.06726439548280018 - 0.06145567493960338im … 0.010531720440322873 - 0.027272976818200647im -0.028092742715358606 + 0.06076989219900271im; 0.0335287223396833 - 0.09399454478266114im -0.02234936815835376 - 0.0422406774454966im … 0.030490916414468893 + 0.058846033931578605im 0.0839723132756924 + 0.034097318247446065im; … ; -0.06527806793679151 - 0.029523442327914im -0.050536915185707736 - 0.02546760937498731im … 0.001032740073147402 + 0.06487939492767279im -0.00099572465950842 - 0.005355124829178284im; -0.056032475263078994 + 0.024957095990476227im -0.0501040724839833 - 0.026797893915189837im … 0.09291411802640744 + 0.016686784580248692im -0.034494488055492836 - 0.03529387012204973im;;; 0.061453292220351646 - 0.028247226595202922im -0.09604837875856953 - 0.04577657785596907im … -0.03477546586656686 + 0.08760735155033438im 0.055381656939777944 + 0.15527356415557195im; -0.03762422625279358 - 0.07172775833329341im -0.05835347849866565 + 0.023339999935333255im … 0.09290187610972878 + 0.11868959088916578im 0.1330294024412226 - 0.0012638065085303456im; … ; -0.09006086039468182 + 0.004660875984992615im -0.04509296965229006 + 0.0006407068966693096im … 0.048555206028666614 + 0.010088185200579254im -0.04275824245658117 - 0.042239919830395434im; -0.015529344663799394 + 0.07180373600120778im -0.03084428150848391 - 0.037023231119568345im … 0.0028938678371240555 - 0.027046588867955867im -0.08759423547571454 + 0.058587321972950565im;;; … ;;; -0.021232318075002747 + 0.07682554633322666im 0.04951809639308913 - 0.013882976499445043im … -0.012118933229511648 - 0.05041977096212544im -0.08359680109854813 - 0.025503268370728874im; 0.029485340362275292 - 0.004696381285115327im 0.0009679514367416549 - 0.05570375000234938im … -0.027319519569937195 - 0.051313944181223606im -0.04735431646166765 - 0.010308205970613053im; … ; 0.008336204974491775 - 0.05805139292982209im -0.016802904890779034 - 0.028182840435960206im … -0.019704822811284016 + 0.014754730409455623im 0.05706952377709908 + 0.028823642575215264im; -0.09904550165054173 - 0.005737933328782944im 0.0007168486648412298 + 0.02534208810085983im … 0.044946314496034256 - 0.017664406971367418im 0.0040526015939802915 - 0.09512559369434945im;;; 0.07289920501478805 + 0.003363376707582376im -0.04052753801858833 - 0.06658297973931142im … -0.01931220388050279 - 0.012212121606882495im -0.012305317724481395 + 0.05199070217997583im; -0.018873994739097573 - 0.08031806685789399im -0.09133938485868173 + 0.0033439401365116094im … -0.03568550700083067 - 0.03779369974828269im -0.006066481580726785 - 0.02967481280293587im; … ; -0.04543596478202229 - 0.02998471378045533im -0.0228391899466868 - 0.028109059115911956im … 0.04448194593921953 + 0.05767462129647368im 0.06740019398439995 - 0.016208201376392947im; -0.0335105541609622 + 0.09117499816622869im 0.014652981635788459 - 0.015779615796445944im … 0.04706757395178185 - 0.029000631247012996im -0.06406283404300667 - 0.015237973417161363im;;; -0.011485780470007208 - 0.0389397600111576im -0.09166490189318437 + 0.031232640390533792im … 0.019539374294129504 + 0.007394205752979988im 0.053185368425418475 - 0.004893561325464729im; -0.0478772519660561 - 0.02569927044191206im -0.024518109649526474 + 0.07128231631656155im … -0.012600127254802408 - 0.013450702988186881im -0.0036362368911417933 - 0.041741356277342836im; … ; -0.0650678257800797 - 0.027300119093586275im -0.053308672111220486 - 0.0129970449863062im … 0.09798464574638757 + 0.014632810275574379im 0.02016606449654599 - 0.045089961516742647im; -0.012832547769491338 + 0.03194229349589038im -0.049942151155779324 - 0.005236232379912088im … 0.01919023578806213 - 0.00905150101049844im -0.021471892704281265 + 0.014800230781271967im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668725252 -11.10030839674273 … -8.289845772412782 -11.10030839674279; -11.10030839674273 -9.13005782594813 … -9.130057795896837 -11.100308356759752; … ; -8.289845772412782 -9.130057795896837 … -4.149589921643699 -6.287956198199661; -11.100308396742788 -11.100308356759754 … -6.2879561981996615 -9.111848223577718;;; -11.100308396742731 -9.130057825948128 … -9.130057795896839 -11.100308356759754; -9.13005782594813 -6.90315948198253 … -9.130057827297811 -10.053883826552466; … ; -9.130057795896837 -9.130057827297811 … -5.294353669214784 -7.547399206521979; -11.100308356759752 -10.053883826552466 … -7.5473992065219795 -10.05388382655257;;; -8.289845772413079 -6.30762193151713 … -8.289845781012033 -9.111848193526388; -6.307621931517132 -4.516655665816198 … -7.547399237611811 -7.547399206522211; … ; -8.289845781012032 -7.54739923761181 … -5.7689690835816085 -7.547399237611882; -9.111848193526386 -7.54739920652221 … -7.547399237611883 -9.111848224927625;;; … ;;; -5.301031718250204 -6.307621955789338 … -2.549703573276452 -3.849582179388257; -6.3076219557893385 -6.9031594952093585 … -3.3290606985467113 -4.87841935863107; … ; -2.5497035732764513 -3.329060698546712 … -1.2567984709028488 -1.8141947460414756; -3.849582179388256 -4.878419358631072 … -1.8141947460414751 -2.71476733532306;;; -8.289845772412782 -9.130057795896837 … -4.1495899216437 -6.28795619819966; -9.130057795896839 -9.13005782729781 … -5.294353669214783 -7.547399206521978; … ; -4.1495899216437 -5.294353669214784 … -1.9094492399157277 -2.894612367852706; -6.287956198199661 -7.547399206521979 … -2.8946123678527056 -4.4855427593724375;;; -11.10030839674279 -11.100308356759754 … -6.2879561981996615 -9.111848223577717; -11.100308356759752 -10.053883826552466 … -7.54739920652198 -10.053883826552571; … ; -6.28795619819966 -7.54739920652198 … -2.8946123678527056 -4.4855427593724375; -9.111848223577718 -10.05388382655257 … -4.485542759372439 -6.871104500135578])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668725252 -11.10030839674273 … -8.289845772412782 -11.10030839674279; -11.10030839674273 -9.13005782594813 … -9.130057795896837 -11.100308356759752; … ; -8.289845772412782 -9.130057795896837 … -4.149589921643699 -6.287956198199661; -11.100308396742788 -11.100308356759754 … -6.2879561981996615 -9.111848223577718;;; -11.100308396742731 -9.130057825948128 … -9.130057795896839 -11.100308356759754; -9.13005782594813 -6.90315948198253 … -9.130057827297811 -10.053883826552466; … ; -9.130057795896837 -9.130057827297811 … -5.294353669214784 -7.547399206521979; -11.100308356759752 -10.053883826552466 … -7.5473992065219795 -10.05388382655257;;; -8.289845772413079 -6.30762193151713 … -8.289845781012033 -9.111848193526388; -6.307621931517132 -4.516655665816198 … -7.547399237611811 -7.547399206522211; … ; -8.289845781012032 -7.54739923761181 … -5.7689690835816085 -7.547399237611882; -9.111848193526386 -7.54739920652221 … -7.547399237611883 -9.111848224927625;;; … ;;; -5.301031718250204 -6.307621955789338 … -2.549703573276452 -3.849582179388257; -6.3076219557893385 -6.9031594952093585 … -3.3290606985467113 -4.87841935863107; … ; -2.5497035732764513 -3.329060698546712 … -1.2567984709028488 -1.8141947460414756; -3.849582179388256 -4.878419358631072 … -1.8141947460414751 -2.71476733532306;;; -8.289845772412782 -9.130057795896837 … -4.1495899216437 -6.28795619819966; -9.130057795896839 -9.13005782729781 … -5.294353669214783 -7.547399206521978; … ; -4.1495899216437 -5.294353669214784 … -1.9094492399157277 -2.894612367852706; -6.287956198199661 -7.547399206521979 … -2.8946123678527056 -4.4855427593724375;;; -11.10030839674279 -11.100308356759754 … -6.2879561981996615 -9.111848223577717; -11.100308356759752 -10.053883826552466 … -7.54739920652198 -10.053883826552571; … ; -6.28795619819966 -7.54739920652198 … -2.8946123678527056 -4.4855427593724375; -9.111848223577718 -10.05388382655257 … -4.485542759372439 -6.871104500135578]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.020740337152908767 + 0.0014127778549456766im -0.0441492747460776 - 0.012277539960647135im … 0.0737359145976687 - 0.028346657953775112im -0.0061659128207280835 - 0.03184159717631631im; 0.008489940720941488 - 0.010817817535692466im -0.0029693473090340082 - 0.02796361756064078im … -0.004932776809632244 - 0.012945812782057038im 0.002525268918165316 - 0.000711507078581218im; … ; -0.06113035268332262 + 0.003457940352133005im -0.02676132262018594 - 0.0026753381647440025im … -0.005064336344537656 - 0.0012121011850669383im -0.04083375562715498 + 0.0028387309655541946im; -0.022673953496326928 + 0.02226242599419878im -0.021359036775115678 - 0.007577808706044718im … 0.03516163537284255 + 0.051541772087060206im 0.01987666356382345 + 0.004500612220169559im;;; 0.007630537409807417 + 0.04036878614644412im -0.06726439548280018 - 0.06145567493960338im … 0.010531720440322873 - 0.027272976818200647im -0.028092742715358606 + 0.06076989219900271im; 0.0335287223396833 - 0.09399454478266114im -0.02234936815835376 - 0.0422406774454966im … 0.030490916414468893 + 0.058846033931578605im 0.0839723132756924 + 0.034097318247446065im; … ; -0.06527806793679151 - 0.029523442327914im -0.050536915185707736 - 0.02546760937498731im … 0.001032740073147402 + 0.06487939492767279im -0.00099572465950842 - 0.005355124829178284im; -0.056032475263078994 + 0.024957095990476227im -0.0501040724839833 - 0.026797893915189837im … 0.09291411802640744 + 0.016686784580248692im -0.034494488055492836 - 0.03529387012204973im;;; 0.061453292220351646 - 0.028247226595202922im -0.09604837875856953 - 0.04577657785596907im … -0.03477546586656686 + 0.08760735155033438im 0.055381656939777944 + 0.15527356415557195im; -0.03762422625279358 - 0.07172775833329341im -0.05835347849866565 + 0.023339999935333255im … 0.09290187610972878 + 0.11868959088916578im 0.1330294024412226 - 0.0012638065085303456im; … ; -0.09006086039468182 + 0.004660875984992615im -0.04509296965229006 + 0.0006407068966693096im … 0.048555206028666614 + 0.010088185200579254im -0.04275824245658117 - 0.042239919830395434im; -0.015529344663799394 + 0.07180373600120778im -0.03084428150848391 - 0.037023231119568345im … 0.0028938678371240555 - 0.027046588867955867im -0.08759423547571454 + 0.058587321972950565im;;; … ;;; -0.021232318075002747 + 0.07682554633322666im 0.04951809639308913 - 0.013882976499445043im … -0.012118933229511648 - 0.05041977096212544im -0.08359680109854813 - 0.025503268370728874im; 0.029485340362275292 - 0.004696381285115327im 0.0009679514367416549 - 0.05570375000234938im … -0.027319519569937195 - 0.051313944181223606im -0.04735431646166765 - 0.010308205970613053im; … ; 0.008336204974491775 - 0.05805139292982209im -0.016802904890779034 - 0.028182840435960206im … -0.019704822811284016 + 0.014754730409455623im 0.05706952377709908 + 0.028823642575215264im; -0.09904550165054173 - 0.005737933328782944im 0.0007168486648412298 + 0.02534208810085983im … 0.044946314496034256 - 0.017664406971367418im 0.0040526015939802915 - 0.09512559369434945im;;; 0.07289920501478805 + 0.003363376707582376im -0.04052753801858833 - 0.06658297973931142im … -0.01931220388050279 - 0.012212121606882495im -0.012305317724481395 + 0.05199070217997583im; -0.018873994739097573 - 0.08031806685789399im -0.09133938485868173 + 0.0033439401365116094im … -0.03568550700083067 - 0.03779369974828269im -0.006066481580726785 - 0.02967481280293587im; … ; -0.04543596478202229 - 0.02998471378045533im -0.0228391899466868 - 0.028109059115911956im … 0.04448194593921953 + 0.05767462129647368im 0.06740019398439995 - 0.016208201376392947im; -0.0335105541609622 + 0.09117499816622869im 0.014652981635788459 - 0.015779615796445944im … 0.04706757395178185 - 0.029000631247012996im -0.06406283404300667 - 0.015237973417161363im;;; -0.011485780470007208 - 0.0389397600111576im -0.09166490189318437 + 0.031232640390533792im … 0.019539374294129504 + 0.007394205752979988im 0.053185368425418475 - 0.004893561325464729im; -0.0478772519660561 - 0.02569927044191206im -0.024518109649526474 + 0.07128231631656155im … -0.012600127254802408 - 0.013450702988186881im -0.0036362368911417933 - 0.041741356277342836im; … ; -0.0650678257800797 - 0.027300119093586275im -0.053308672111220486 - 0.0129970449863062im … 0.09798464574638757 + 0.014632810275574379im 0.02016606449654599 - 0.045089961516742647im; -0.012832547769491338 + 0.03194229349589038im -0.049942151155779324 - 0.005236232379912088im … 0.01919023578806213 - 0.00905150101049844im -0.021471892704281265 + 0.014800230781271967im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668725252 -11.10030839674273 … -8.289845772412782 -11.10030839674279; -11.10030839674273 -9.13005782594813 … -9.130057795896837 -11.100308356759752; … ; -8.289845772412782 -9.130057795896837 … -4.149589921643699 -6.287956198199661; -11.100308396742788 -11.100308356759754 … -6.2879561981996615 -9.111848223577718;;; -11.100308396742731 -9.130057825948128 … -9.130057795896839 -11.100308356759754; -9.13005782594813 -6.90315948198253 … -9.130057827297811 -10.053883826552466; … ; -9.130057795896837 -9.130057827297811 … -5.294353669214784 -7.547399206521979; -11.100308356759752 -10.053883826552466 … -7.5473992065219795 -10.05388382655257;;; -8.289845772413079 -6.30762193151713 … -8.289845781012033 -9.111848193526388; -6.307621931517132 -4.516655665816198 … -7.547399237611811 -7.547399206522211; … ; -8.289845781012032 -7.54739923761181 … -5.7689690835816085 -7.547399237611882; -9.111848193526386 -7.54739920652221 … -7.547399237611883 -9.111848224927625;;; … ;;; -5.301031718250204 -6.307621955789338 … -2.549703573276452 -3.849582179388257; -6.3076219557893385 -6.9031594952093585 … -3.3290606985467113 -4.87841935863107; … ; -2.5497035732764513 -3.329060698546712 … -1.2567984709028488 -1.8141947460414756; -3.849582179388256 -4.878419358631072 … -1.8141947460414751 -2.71476733532306;;; -8.289845772412782 -9.130057795896837 … -4.1495899216437 -6.28795619819966; -9.130057795896839 -9.13005782729781 … -5.294353669214783 -7.547399206521978; … ; -4.1495899216437 -5.294353669214784 … -1.9094492399157277 -2.894612367852706; -6.287956198199661 -7.547399206521979 … -2.8946123678527056 -4.4855427593724375;;; -11.10030839674279 -11.100308356759754 … -6.2879561981996615 -9.111848223577717; -11.100308356759752 -10.053883826552466 … -7.54739920652198 -10.053883826552571; … ; -6.28795619819966 -7.54739920652198 … -2.8946123678527056 -4.4855427593724375; -9.111848223577718 -10.05388382655257 … -4.485542759372439 -6.871104500135578])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668725252 -11.10030839674273 … -8.289845772412782 -11.10030839674279; -11.10030839674273 -9.13005782594813 … -9.130057795896837 -11.100308356759752; … ; -8.289845772412782 -9.130057795896837 … -4.149589921643699 -6.287956198199661; -11.100308396742788 -11.100308356759754 … -6.2879561981996615 -9.111848223577718;;; -11.100308396742731 -9.130057825948128 … -9.130057795896839 -11.100308356759754; -9.13005782594813 -6.90315948198253 … -9.130057827297811 -10.053883826552466; … ; -9.130057795896837 -9.130057827297811 … -5.294353669214784 -7.547399206521979; -11.100308356759752 -10.053883826552466 … -7.5473992065219795 -10.05388382655257;;; -8.289845772413079 -6.30762193151713 … -8.289845781012033 -9.111848193526388; -6.307621931517132 -4.516655665816198 … -7.547399237611811 -7.547399206522211; … ; -8.289845781012032 -7.54739923761181 … -5.7689690835816085 -7.547399237611882; -9.111848193526386 -7.54739920652221 … -7.547399237611883 -9.111848224927625;;; … ;;; -5.301031718250204 -6.307621955789338 … -2.549703573276452 -3.849582179388257; -6.3076219557893385 -6.9031594952093585 … -3.3290606985467113 -4.87841935863107; … ; -2.5497035732764513 -3.329060698546712 … -1.2567984709028488 -1.8141947460414756; -3.849582179388256 -4.878419358631072 … -1.8141947460414751 -2.71476733532306;;; -8.289845772412782 -9.130057795896837 … -4.1495899216437 -6.28795619819966; -9.130057795896839 -9.13005782729781 … -5.294353669214783 -7.547399206521978; … ; -4.1495899216437 -5.294353669214784 … -1.9094492399157277 -2.894612367852706; -6.287956198199661 -7.547399206521979 … -2.8946123678527056 -4.4855427593724375;;; -11.10030839674279 -11.100308356759754 … -6.2879561981996615 -9.111848223577717; -11.100308356759752 -10.053883826552466 … -7.54739920652198 -10.053883826552571; … ; -6.28795619819966 -7.54739920652198 … -2.8946123678527056 -4.4855427593724375; -9.111848223577718 -10.05388382655257 … -4.485542759372439 -6.871104500135578]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.020740337152908767 + 0.0014127778549456766im -0.0441492747460776 - 0.012277539960647135im … 0.0737359145976687 - 0.028346657953775112im -0.0061659128207280835 - 0.03184159717631631im; 0.008489940720941488 - 0.010817817535692466im -0.0029693473090340082 - 0.02796361756064078im … -0.004932776809632244 - 0.012945812782057038im 0.002525268918165316 - 0.000711507078581218im; … ; -0.06113035268332262 + 0.003457940352133005im -0.02676132262018594 - 0.0026753381647440025im … -0.005064336344537656 - 0.0012121011850669383im -0.04083375562715498 + 0.0028387309655541946im; -0.022673953496326928 + 0.02226242599419878im -0.021359036775115678 - 0.007577808706044718im … 0.03516163537284255 + 0.051541772087060206im 0.01987666356382345 + 0.004500612220169559im;;; 0.007630537409807417 + 0.04036878614644412im -0.06726439548280018 - 0.06145567493960338im … 0.010531720440322873 - 0.027272976818200647im -0.028092742715358606 + 0.06076989219900271im; 0.0335287223396833 - 0.09399454478266114im -0.02234936815835376 - 0.0422406774454966im … 0.030490916414468893 + 0.058846033931578605im 0.0839723132756924 + 0.034097318247446065im; … ; -0.06527806793679151 - 0.029523442327914im -0.050536915185707736 - 0.02546760937498731im … 0.001032740073147402 + 0.06487939492767279im -0.00099572465950842 - 0.005355124829178284im; -0.056032475263078994 + 0.024957095990476227im -0.0501040724839833 - 0.026797893915189837im … 0.09291411802640744 + 0.016686784580248692im -0.034494488055492836 - 0.03529387012204973im;;; 0.061453292220351646 - 0.028247226595202922im -0.09604837875856953 - 0.04577657785596907im … -0.03477546586656686 + 0.08760735155033438im 0.055381656939777944 + 0.15527356415557195im; -0.03762422625279358 - 0.07172775833329341im -0.05835347849866565 + 0.023339999935333255im … 0.09290187610972878 + 0.11868959088916578im 0.1330294024412226 - 0.0012638065085303456im; … ; -0.09006086039468182 + 0.004660875984992615im -0.04509296965229006 + 0.0006407068966693096im … 0.048555206028666614 + 0.010088185200579254im -0.04275824245658117 - 0.042239919830395434im; -0.015529344663799394 + 0.07180373600120778im -0.03084428150848391 - 0.037023231119568345im … 0.0028938678371240555 - 0.027046588867955867im -0.08759423547571454 + 0.058587321972950565im;;; … ;;; -0.021232318075002747 + 0.07682554633322666im 0.04951809639308913 - 0.013882976499445043im … -0.012118933229511648 - 0.05041977096212544im -0.08359680109854813 - 0.025503268370728874im; 0.029485340362275292 - 0.004696381285115327im 0.0009679514367416549 - 0.05570375000234938im … -0.027319519569937195 - 0.051313944181223606im -0.04735431646166765 - 0.010308205970613053im; … ; 0.008336204974491775 - 0.05805139292982209im -0.016802904890779034 - 0.028182840435960206im … -0.019704822811284016 + 0.014754730409455623im 0.05706952377709908 + 0.028823642575215264im; -0.09904550165054173 - 0.005737933328782944im 0.0007168486648412298 + 0.02534208810085983im … 0.044946314496034256 - 0.017664406971367418im 0.0040526015939802915 - 0.09512559369434945im;;; 0.07289920501478805 + 0.003363376707582376im -0.04052753801858833 - 0.06658297973931142im … -0.01931220388050279 - 0.012212121606882495im -0.012305317724481395 + 0.05199070217997583im; -0.018873994739097573 - 0.08031806685789399im -0.09133938485868173 + 0.0033439401365116094im … -0.03568550700083067 - 0.03779369974828269im -0.006066481580726785 - 0.02967481280293587im; … ; -0.04543596478202229 - 0.02998471378045533im -0.0228391899466868 - 0.028109059115911956im … 0.04448194593921953 + 0.05767462129647368im 0.06740019398439995 - 0.016208201376392947im; -0.0335105541609622 + 0.09117499816622869im 0.014652981635788459 - 0.015779615796445944im … 0.04706757395178185 - 0.029000631247012996im -0.06406283404300667 - 0.015237973417161363im;;; -0.011485780470007208 - 0.0389397600111576im -0.09166490189318437 + 0.031232640390533792im … 0.019539374294129504 + 0.007394205752979988im 0.053185368425418475 - 0.004893561325464729im; -0.0478772519660561 - 0.02569927044191206im -0.024518109649526474 + 0.07128231631656155im … -0.012600127254802408 - 0.013450702988186881im -0.0036362368911417933 - 0.041741356277342836im; … ; -0.0650678257800797 - 0.027300119093586275im -0.053308672111220486 - 0.0129970449863062im … 0.09798464574638757 + 0.014632810275574379im 0.02016606449654599 - 0.045089961516742647im; -0.012832547769491338 + 0.03194229349589038im -0.049942151155779324 - 0.005236232379912088im … 0.01919023578806213 - 0.00905150101049844im -0.021471892704281265 + 0.014800230781271967im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668725252 -11.10030839674273 … -8.289845772412782 -11.10030839674279; -11.10030839674273 -9.13005782594813 … -9.130057795896837 -11.100308356759752; … ; -8.289845772412782 -9.130057795896837 … -4.149589921643699 -6.287956198199661; -11.100308396742788 -11.100308356759754 … -6.2879561981996615 -9.111848223577718;;; -11.100308396742731 -9.130057825948128 … -9.130057795896839 -11.100308356759754; -9.13005782594813 -6.90315948198253 … -9.130057827297811 -10.053883826552466; … ; -9.130057795896837 -9.130057827297811 … -5.294353669214784 -7.547399206521979; -11.100308356759752 -10.053883826552466 … -7.5473992065219795 -10.05388382655257;;; -8.289845772413079 -6.30762193151713 … -8.289845781012033 -9.111848193526388; -6.307621931517132 -4.516655665816198 … -7.547399237611811 -7.547399206522211; … ; -8.289845781012032 -7.54739923761181 … -5.7689690835816085 -7.547399237611882; -9.111848193526386 -7.54739920652221 … -7.547399237611883 -9.111848224927625;;; … ;;; -5.301031718250204 -6.307621955789338 … -2.549703573276452 -3.849582179388257; -6.3076219557893385 -6.9031594952093585 … -3.3290606985467113 -4.87841935863107; … ; -2.5497035732764513 -3.329060698546712 … -1.2567984709028488 -1.8141947460414756; -3.849582179388256 -4.878419358631072 … -1.8141947460414751 -2.71476733532306;;; -8.289845772412782 -9.130057795896837 … -4.1495899216437 -6.28795619819966; -9.130057795896839 -9.13005782729781 … -5.294353669214783 -7.547399206521978; … ; -4.1495899216437 -5.294353669214784 … -1.9094492399157277 -2.894612367852706; -6.287956198199661 -7.547399206521979 … -2.8946123678527056 -4.4855427593724375;;; -11.10030839674279 -11.100308356759754 … -6.2879561981996615 -9.111848223577717; -11.100308356759752 -10.053883826552466 … -7.54739920652198 -10.053883826552571; … ; -6.28795619819966 -7.54739920652198 … -2.8946123678527056 -4.4855427593724375; -9.111848223577718 -10.05388382655257 … -4.485542759372439 -6.871104500135578])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668725252 -11.10030839674273 … -8.289845772412782 -11.10030839674279; -11.10030839674273 -9.13005782594813 … -9.130057795896837 -11.100308356759752; … ; -8.289845772412782 -9.130057795896837 … -4.149589921643699 -6.287956198199661; -11.100308396742788 -11.100308356759754 … -6.2879561981996615 -9.111848223577718;;; -11.100308396742731 -9.130057825948128 … -9.130057795896839 -11.100308356759754; -9.13005782594813 -6.90315948198253 … -9.130057827297811 -10.053883826552466; … ; -9.130057795896837 -9.130057827297811 … -5.294353669214784 -7.547399206521979; -11.100308356759752 -10.053883826552466 … -7.5473992065219795 -10.05388382655257;;; -8.289845772413079 -6.30762193151713 … -8.289845781012033 -9.111848193526388; -6.307621931517132 -4.516655665816198 … -7.547399237611811 -7.547399206522211; … ; -8.289845781012032 -7.54739923761181 … -5.7689690835816085 -7.547399237611882; -9.111848193526386 -7.54739920652221 … -7.547399237611883 -9.111848224927625;;; … ;;; -5.301031718250204 -6.307621955789338 … -2.549703573276452 -3.849582179388257; -6.3076219557893385 -6.9031594952093585 … -3.3290606985467113 -4.87841935863107; … ; -2.5497035732764513 -3.329060698546712 … -1.2567984709028488 -1.8141947460414756; -3.849582179388256 -4.878419358631072 … -1.8141947460414751 -2.71476733532306;;; -8.289845772412782 -9.130057795896837 … -4.1495899216437 -6.28795619819966; -9.130057795896839 -9.13005782729781 … -5.294353669214783 -7.547399206521978; … ; -4.1495899216437 -5.294353669214784 … -1.9094492399157277 -2.894612367852706; -6.287956198199661 -7.547399206521979 … -2.8946123678527056 -4.4855427593724375;;; -11.10030839674279 -11.100308356759754 … -6.2879561981996615 -9.111848223577717; -11.100308356759752 -10.053883826552466 … -7.54739920652198 -10.053883826552571; … ; -6.28795619819966 -7.54739920652198 … -2.8946123678527056 -4.4855427593724375; -9.111848223577718 -10.05388382655257 … -4.485542759372439 -6.871104500135578]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.020740337152908767 + 0.0014127778549456766im -0.0441492747460776 - 0.012277539960647135im … 0.0737359145976687 - 0.028346657953775112im -0.0061659128207280835 - 0.03184159717631631im; 0.008489940720941488 - 0.010817817535692466im -0.0029693473090340082 - 0.02796361756064078im … -0.004932776809632244 - 0.012945812782057038im 0.002525268918165316 - 0.000711507078581218im; … ; -0.06113035268332262 + 0.003457940352133005im -0.02676132262018594 - 0.0026753381647440025im … -0.005064336344537656 - 0.0012121011850669383im -0.04083375562715498 + 0.0028387309655541946im; -0.022673953496326928 + 0.02226242599419878im -0.021359036775115678 - 0.007577808706044718im … 0.03516163537284255 + 0.051541772087060206im 0.01987666356382345 + 0.004500612220169559im;;; 0.007630537409807417 + 0.04036878614644412im -0.06726439548280018 - 0.06145567493960338im … 0.010531720440322873 - 0.027272976818200647im -0.028092742715358606 + 0.06076989219900271im; 0.0335287223396833 - 0.09399454478266114im -0.02234936815835376 - 0.0422406774454966im … 0.030490916414468893 + 0.058846033931578605im 0.0839723132756924 + 0.034097318247446065im; … ; -0.06527806793679151 - 0.029523442327914im -0.050536915185707736 - 0.02546760937498731im … 0.001032740073147402 + 0.06487939492767279im -0.00099572465950842 - 0.005355124829178284im; -0.056032475263078994 + 0.024957095990476227im -0.0501040724839833 - 0.026797893915189837im … 0.09291411802640744 + 0.016686784580248692im -0.034494488055492836 - 0.03529387012204973im;;; 0.061453292220351646 - 0.028247226595202922im -0.09604837875856953 - 0.04577657785596907im … -0.03477546586656686 + 0.08760735155033438im 0.055381656939777944 + 0.15527356415557195im; -0.03762422625279358 - 0.07172775833329341im -0.05835347849866565 + 0.023339999935333255im … 0.09290187610972878 + 0.11868959088916578im 0.1330294024412226 - 0.0012638065085303456im; … ; -0.09006086039468182 + 0.004660875984992615im -0.04509296965229006 + 0.0006407068966693096im … 0.048555206028666614 + 0.010088185200579254im -0.04275824245658117 - 0.042239919830395434im; -0.015529344663799394 + 0.07180373600120778im -0.03084428150848391 - 0.037023231119568345im … 0.0028938678371240555 - 0.027046588867955867im -0.08759423547571454 + 0.058587321972950565im;;; … ;;; -0.021232318075002747 + 0.07682554633322666im 0.04951809639308913 - 0.013882976499445043im … -0.012118933229511648 - 0.05041977096212544im -0.08359680109854813 - 0.025503268370728874im; 0.029485340362275292 - 0.004696381285115327im 0.0009679514367416549 - 0.05570375000234938im … -0.027319519569937195 - 0.051313944181223606im -0.04735431646166765 - 0.010308205970613053im; … ; 0.008336204974491775 - 0.05805139292982209im -0.016802904890779034 - 0.028182840435960206im … -0.019704822811284016 + 0.014754730409455623im 0.05706952377709908 + 0.028823642575215264im; -0.09904550165054173 - 0.005737933328782944im 0.0007168486648412298 + 0.02534208810085983im … 0.044946314496034256 - 0.017664406971367418im 0.0040526015939802915 - 0.09512559369434945im;;; 0.07289920501478805 + 0.003363376707582376im -0.04052753801858833 - 0.06658297973931142im … -0.01931220388050279 - 0.012212121606882495im -0.012305317724481395 + 0.05199070217997583im; -0.018873994739097573 - 0.08031806685789399im -0.09133938485868173 + 0.0033439401365116094im … -0.03568550700083067 - 0.03779369974828269im -0.006066481580726785 - 0.02967481280293587im; … ; -0.04543596478202229 - 0.02998471378045533im -0.0228391899466868 - 0.028109059115911956im … 0.04448194593921953 + 0.05767462129647368im 0.06740019398439995 - 0.016208201376392947im; -0.0335105541609622 + 0.09117499816622869im 0.014652981635788459 - 0.015779615796445944im … 0.04706757395178185 - 0.029000631247012996im -0.06406283404300667 - 0.015237973417161363im;;; -0.011485780470007208 - 0.0389397600111576im -0.09166490189318437 + 0.031232640390533792im … 0.019539374294129504 + 0.007394205752979988im 0.053185368425418475 - 0.004893561325464729im; -0.0478772519660561 - 0.02569927044191206im -0.024518109649526474 + 0.07128231631656155im … -0.012600127254802408 - 0.013450702988186881im -0.0036362368911417933 - 0.041741356277342836im; … ; -0.0650678257800797 - 0.027300119093586275im -0.053308672111220486 - 0.0129970449863062im … 0.09798464574638757 + 0.014632810275574379im 0.02016606449654599 - 0.045089961516742647im; -0.012832547769491338 + 0.03194229349589038im -0.049942151155779324 - 0.005236232379912088im … 0.01919023578806213 - 0.00905150101049844im -0.021471892704281265 + 0.014800230781271967im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488504), converged = true, ρ = [7.589784543121055e-5 0.0011262712728344535 … 0.0066970375500702345 0.0011262712728344652; 0.0011262712728344552 0.005274334457361433 … 0.005274334457361458 0.0011262712728344686; … ; 0.006697037550070238 0.0052743344573614615 … 0.023244754191035125 0.012258986825228814; 0.0011262712728344585 0.001126271272834462 … 0.012258986825228812 0.0037700086298895377;;; 0.0011262712728344541 0.005274334457361442 … 0.005274334457361471 0.0011262712728344656; 0.005274334457361444 0.01462006530469892 … 0.005274334457361463 0.0025880808748462076; … ; 0.0052743344573614745 0.005274334457361464 … 0.018107686646123076 0.008922003044733279; 0.0011262712728344585 0.0025880808748462002 … 0.008922003044733277 0.0025880808748462154;;; 0.006697037550070196 0.01641210910157784 … 0.0066970375500702345 0.003770008629889531; 0.01641210910157784 0.0312778393158915 … 0.008922003044733255 0.00892200304473323; … ; 0.006697037550070238 0.008922003044733257 … 0.016476756359429894 0.008922003044733274; 0.0037700086298895243 0.00892200304473323 … 0.008922003044733274 0.003770008629889536;;; … ;;; 0.019853839853378536 0.01641210910157785 … 0.03715667363564325 0.02719080068655721; 0.016412109101577848 0.01462006530469893 … 0.032301272126415675 0.02232210093168975; … ; 0.03715667363564325 0.03230127212641569 … 0.04629698070142036 0.042636582731413894; 0.027190800686557208 0.022322100931689747 … 0.0426365827314139 0.034772229141975225;;; 0.006697037550070202 0.005274334457361448 … 0.023244754191035097 0.012258986825228784; 0.005274334457361445 0.005274334457361431 … 0.018107686646123042 0.008922003044733237; … ; 0.0232447541910351 0.018107686646123052 … 0.04037111033555543 0.031491603811370034; 0.01225898682522878 0.008922003044733237 … 0.03149160381137002 0.020047163432723013;;; 0.001126271272834456 0.0011262712728344632 … 0.012258986825228803 0.0037700086298895325; 0.001126271272834461 0.0025880808748461916 … 0.008922003044733258 0.0025880808748462093; … ; 0.012258986825228807 0.008922003044733265 … 0.03149160381137004 0.02004716343272304; 0.003770008629889526 0.002588080874846203 … 0.020047163432723038 0.008952603496758471;;;;], eigenvalues = [[-0.17836835653924288, 0.2624919449916499, 0.26249194499164996, 0.26249194499165, 0.35469214816784533, 0.3546921481678453, 0.3546921481678789], [-0.12755037617907478, 0.06475320594693737, 0.22545166517432305, 0.22545166517432316, 0.3219776496115022, 0.3892227690849602, 0.38922276908496034], [-0.10818729216496409, 0.07755003473456891, 0.17278328011482263, 0.17278328011482244, 0.2843518536198307, 0.3305476484330653, 0.5267232426396715], [-0.057773253744194925, 0.012724782205677061, 0.09766073750130325, 0.18417825332985152, 0.31522841795991774, 0.47203121858464864, 0.49791351769975245]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930574035, n_iter = 10, ψ = Matrix{ComplexF64}[[0.07037007363061293 - 0.9469697671860623im -5.5047546116665683e-14 + 4.560780749831413e-14im … 2.4215781378072653e-11 + 5.5412628550186605e-12im 5.445141375951227e-8 + 1.2472955658927395e-8im; -0.06485503638046278 - 0.07526766535797134im -0.06431716757897926 + 0.1377091226160208im … 0.13448002658098837 - 0.14885008076130615im 0.07839522907192314 - 0.18109500048273747im; … ; -0.0008713489753947218 + 0.011725739277012388im 0.013219083217013105 - 0.023787929429811467im … -0.034688944596084875 + 0.059347133610237385im -0.021457714348682308 - 0.01711668360802358im; -0.06485503638047169 - 0.07526766535799069im -0.003799457776803073 - 0.3762207600499975im … 0.280745087331732 + 0.40894403332262813im -0.15041677690004526 - 0.1553453617859826im], [0.6115274041056271 + 0.688994071505424im 0.13611990030302912 + 0.15064164237740713im … 3.444877653082535e-11 - 1.7473357234144022e-10im -3.9004649446389125e-11 + 2.8811795005439518e-12im; 0.06244058246185969 + 0.003719326381401153im -0.008997810970028133 - 0.0004556534635606919im … -5.3219503514801466e-11 + 3.2801335420070627e-10im 9.924162380190267e-11 - 1.25003731807295e-11im; … ; -0.0032807332817397965 - 0.0036963278606035907im -0.056678042824987694 - 0.06272465259587966im … 0.05532597249735613 + 0.01977184409617356im 0.07831322921725588 + 0.03903848553305314im; 0.11670578084504611 + 0.006951679059440874im 0.09999193334003434 + 0.005063639468213069im … 0.23481104395908806 - 0.1111683716284261im 0.36692782463903956 - 0.12280175308198685im], [-0.7859422323206617 + 0.4887805947691379im -3.4460220210149583e-15 + 4.422558165682201e-14im … 1.1285658124347936e-10 + 4.1108837699197776e-11im -3.964047994945801e-9 + 7.377663465167233e-9im; -0.015559299448143982 + 0.06674412734932507im 0.04116982814505346 + 0.03208630691464049im … 0.02305927044221507 - 0.01192609398435699im -0.006894882225364092 + 0.002514072039888322im; … ; 0.008996934880610746 - 0.005595229523492083im 6.54378072810182e-15 + 1.902799744551943e-14im … 1.2256133972837261e-10 + 9.220467081232013e-11im 0.0463915733880852 + 0.029289318830804947im; -0.03637976127620458 + 0.15605686024937265im -0.23129278165113315 - 0.1802614077732764im … 0.33050754711178815 - 0.17093620007638266im 0.15189057146604895 - 0.03400196149183083im], [0.7815828999244849 + 0.16747399612850708im 4.1333479797629694e-16 + 4.655623222501476e-15im … -0.17676542201270773 - 0.04182415664700865im -9.079341062827414e-6 - 2.6354224807117555e-6im; 0.3289898713972243 - 0.21288039750196094im -0.6093973227355389 + 0.11828829068643294im … 0.15486587863704646 - 0.09560194315357576im 5.094743684217779e-6 - 2.1561172509350923e-6im; … ; -0.012957050086728898 - 0.002776377216366924im 0.00021043715443525113 + 0.0001420223037566124im … 0.012698954571177774 + 0.0030043701914932467im -0.03500661970015308 - 0.029994278924570447im; 0.05632760546191512 - 0.03644806142552452im 0.005215965751487114 - 0.0010124555032211826im … 0.12201926170803622 - 0.07532861633758516im -0.4698171381145185 + 0.0362188573979402im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653924288, 0.2624919449916499, 0.26249194499164996, 0.26249194499165, 0.35469214816784533, 0.3546921481678453, 0.3546921481678789], [-0.12755037617907478, 0.06475320594693737, 0.22545166517432305, 0.22545166517432316, 0.3219776496115022, 0.3892227690849602, 0.38922276908496034], [-0.10818729216496409, 0.07755003473456891, 0.17278328011482263, 0.17278328011482244, 0.2843518536198307, 0.3305476484330653, 0.5267232426396715], [-0.057773253744194925, 0.012724782205677061, 0.09766073750130325, 0.18417825332985152, 0.31522841795991774, 0.47203121858464864, 0.49791351769975245]], X = [[0.07037007363061293 - 0.9469697671860623im -5.5047546116665683e-14 + 4.560780749831413e-14im … 2.4215781378072653e-11 + 5.5412628550186605e-12im 5.445141375951227e-8 + 1.2472955658927395e-8im; -0.06485503638046278 - 0.07526766535797134im -0.06431716757897926 + 0.1377091226160208im … 0.13448002658098837 - 0.14885008076130615im 0.07839522907192314 - 0.18109500048273747im; … ; -0.0008713489753947218 + 0.011725739277012388im 0.013219083217013105 - 0.023787929429811467im … -0.034688944596084875 + 0.059347133610237385im -0.021457714348682308 - 0.01711668360802358im; -0.06485503638047169 - 0.07526766535799069im -0.003799457776803073 - 0.3762207600499975im … 0.280745087331732 + 0.40894403332262813im -0.15041677690004526 - 0.1553453617859826im], [0.6115274041056271 + 0.688994071505424im 0.13611990030302912 + 0.15064164237740713im … 3.444877653082535e-11 - 1.7473357234144022e-10im -3.9004649446389125e-11 + 2.8811795005439518e-12im; 0.06244058246185969 + 0.003719326381401153im -0.008997810970028133 - 0.0004556534635606919im … -5.3219503514801466e-11 + 3.2801335420070627e-10im 9.924162380190267e-11 - 1.25003731807295e-11im; … ; -0.0032807332817397965 - 0.0036963278606035907im -0.056678042824987694 - 0.06272465259587966im … 0.05532597249735613 + 0.01977184409617356im 0.07831322921725588 + 0.03903848553305314im; 0.11670578084504611 + 0.006951679059440874im 0.09999193334003434 + 0.005063639468213069im … 0.23481104395908806 - 0.1111683716284261im 0.36692782463903956 - 0.12280175308198685im], [-0.7859422323206617 + 0.4887805947691379im -3.4460220210149583e-15 + 4.422558165682201e-14im … 1.1285658124347936e-10 + 4.1108837699197776e-11im -3.964047994945801e-9 + 7.377663465167233e-9im; -0.015559299448143982 + 0.06674412734932507im 0.04116982814505346 + 0.03208630691464049im … 0.02305927044221507 - 0.01192609398435699im -0.006894882225364092 + 0.002514072039888322im; … ; 0.008996934880610746 - 0.005595229523492083im 6.54378072810182e-15 + 1.902799744551943e-14im … 1.2256133972837261e-10 + 9.220467081232013e-11im 0.0463915733880852 + 0.029289318830804947im; -0.03637976127620458 + 0.15605686024937265im -0.23129278165113315 - 0.1802614077732764im … 0.33050754711178815 - 0.17093620007638266im 0.15189057146604895 - 0.03400196149183083im], [0.7815828999244849 + 0.16747399612850708im 4.1333479797629694e-16 + 4.655623222501476e-15im … -0.17676542201270773 - 0.04182415664700865im -9.079341062827414e-6 - 2.6354224807117555e-6im; 0.3289898713972243 - 0.21288039750196094im -0.6093973227355389 + 0.11828829068643294im … 0.15486587863704646 - 0.09560194315357576im 5.094743684217779e-6 - 2.1561172509350923e-6im; … ; -0.012957050086728898 - 0.002776377216366924im 0.00021043715443525113 + 0.0001420223037566124im … 0.012698954571177774 + 0.0030043701914932467im -0.03500661970015308 - 0.029994278924570447im; 0.05632760546191512 - 0.03644806142552452im 0.005215965751487114 - 0.0010124555032211826im … 0.12201926170803622 - 0.07532861633758516im -0.4698171381145185 + 0.0362188573979402im]], residual_norms = [[1.665504548802825e-12, 1.7650884716744e-12, 1.540052234279132e-12, 9.420786971292701e-13, 8.165907560059392e-10, 1.3816630145416243e-10, 3.0799636325604106e-7], [2.1315894581964942e-12, 2.798449472411983e-12, 8.873424504833861e-13, 8.314057894780283e-13, 1.587743901178429e-10, 3.093993049028528e-9, 3.5329316306377874e-9], [1.1383921251936689e-12, 1.847200297511408e-12, 1.8578786495205513e-12, 7.798930815201371e-13, 6.99895968983626e-11, 2.1294554633275952e-9, 1.0185159119366766e-6], [6.186191936236254e-13, 5.514142662109758e-13, 6.362084048676452e-13, 1.6936837568608725e-12, 1.9801169627383878e-10, 1.625857238348334e-5, 7.321949157205998e-6]], n_iter = [5, 4, 3, 3], converged = 1, n_matvec = 125)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21069523915970745, 0.02760011006101565, 0.0023067362458251777, 0.0002576204296883959, 9.30024140710253e-6, 9.369912896321881e-7, 3.938899014584342e-8, 2.5742547718246887e-9, 1.0530208768792562e-10, 1.2285170963438814e-11], history_Etot = [-7.905265787046654, -7.910544476760107, -7.91059345399626, -7.910594393254918, -7.9105943964436545, -7.910594396488436, -7.910594396488504, -7.910594396488505, -7.910594396488506, -7.910594396488504], occupation_threshold = 1.0e-6, runtime_ns = 0x00000000bbf481a3)