Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#916"{DFTK.var"#anderson#915#917"{Int64, Base.Pairs{Symbol, Int64, Nothing, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668707424 -11.100308396743264 … -8.289845772413665 -11.100308396743324; -11.100308396743264 -9.130057825947874 … -9.130057795896583 -11.100308356760287; … ; -8.289845772413665 -9.130057795896583 … -4.149589921645166 -6.287956198201397; -11.100308396743323 -11.100308356760289 … -6.287956198201398 -9.111848223580605;;; -11.100308396743266 -9.130057825947873 … -9.130057795896585 -11.100308356760289; -9.130057825947876 -6.903159481980906 … -9.130057827297557 -10.053883826553921; … ; -9.130057795896583 -9.130057827297557 … -5.294353669215613 -7.547399206522812; -11.100308356760287 -10.053883826553921 … -7.547399206522813 -10.053883826554026;;; -8.289845772413964 -6.3076219315161834 … -8.289845781012918 -9.111848193529273; -6.307621931516185 -4.516655665814628 … -7.547399237612644 -7.547399206523044; … ; -8.289845781012916 -7.547399237612643 … -5.768969083582029 -7.547399237612715; -9.111848193529273 -7.547399206523044 … -7.547399237612716 -9.11184822493051;;; … ;;; -5.301031718250296 -6.307621955788392 … -2.549703573277775 -3.849582179389208; -6.307621955788392 -6.903159495207735 … -3.329060698547421 -4.878419358631189; … ; -2.5497035732777746 -3.3290606985474214 … -1.2567984709042619 -1.8141947460430579; -3.849582179389209 -4.878419358631191 … -1.814194746043058 -2.714767335324527;;; -8.289845772413667 -9.130057795896583 … -4.149589921645168 -6.287956198201396; -9.130057795896585 -9.130057827297554 … -5.294353669215612 -7.547399206522811; … ; -4.149589921645168 -5.294353669215613 … -1.9094492399174021 -2.8946123678544327; -6.287956198201397 -7.547399206522811 … -2.894612367854432 -4.485542759374388;;; -11.100308396743324 -11.100308356760289 … -6.287956198201398 -9.111848223580601; -11.100308356760287 -10.053883826553921 … -7.5473992065228135 -10.053883826554026; … ; -6.287956198201396 -7.5473992065228135 … -2.894612367854432 -4.485542759374387; -9.111848223580603 -10.053883826554026 … -4.485542759374388 -6.8711045001385935])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668707424 -11.100308396743264 … -8.289845772413665 -11.100308396743324; -11.100308396743264 -9.130057825947874 … -9.130057795896583 -11.100308356760287; … ; -8.289845772413665 -9.130057795896583 … -4.149589921645166 -6.287956198201397; -11.100308396743323 -11.100308356760289 … -6.287956198201398 -9.111848223580605;;; -11.100308396743266 -9.130057825947873 … -9.130057795896585 -11.100308356760289; -9.130057825947876 -6.903159481980906 … -9.130057827297557 -10.053883826553921; … ; -9.130057795896583 -9.130057827297557 … -5.294353669215613 -7.547399206522812; -11.100308356760287 -10.053883826553921 … -7.547399206522813 -10.053883826554026;;; -8.289845772413964 -6.3076219315161834 … -8.289845781012918 -9.111848193529273; -6.307621931516185 -4.516655665814628 … -7.547399237612644 -7.547399206523044; … ; -8.289845781012916 -7.547399237612643 … -5.768969083582029 -7.547399237612715; -9.111848193529273 -7.547399206523044 … -7.547399237612716 -9.11184822493051;;; … ;;; -5.301031718250296 -6.307621955788392 … -2.549703573277775 -3.849582179389208; -6.307621955788392 -6.903159495207735 … -3.329060698547421 -4.878419358631189; … ; -2.5497035732777746 -3.3290606985474214 … -1.2567984709042619 -1.8141947460430579; -3.849582179389209 -4.878419358631191 … -1.814194746043058 -2.714767335324527;;; -8.289845772413667 -9.130057795896583 … -4.149589921645168 -6.287956198201396; -9.130057795896585 -9.130057827297554 … -5.294353669215612 -7.547399206522811; … ; -4.149589921645168 -5.294353669215613 … -1.9094492399174021 -2.8946123678544327; -6.287956198201397 -7.547399206522811 … -2.894612367854432 -4.485542759374388;;; -11.100308396743324 -11.100308356760289 … -6.287956198201398 -9.111848223580601; -11.100308356760287 -10.053883826553921 … -7.5473992065228135 -10.053883826554026; … ; -6.287956198201396 -7.5473992065228135 … -2.894612367854432 -4.485542759374387; -9.111848223580603 -10.053883826554026 … -4.485542759374388 -6.8711045001385935]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.01342469410080766 - 0.028950753698025036im 0.004018591585823223 + 0.021087280690530744im … 0.04254310117280265 - 0.005254625889065699im 0.03269974331131559 - 0.04471963876500303im; 0.005839003424014604 + 0.009537192304388119im 0.04662578024872248 + 0.004838621298210982im … 0.01661957169062718 - 0.025604319956012714im -0.000695195513813654 - 0.02493464099415036im; … ; 0.05433824782980132 - 0.003288791778445448im -0.005195068375889555 - 0.03473064536994647im … -0.012074011885725775 - 0.02611119198093998im 0.011117947344383945 + 0.0308642444084635im; 0.02640825687000845 - 0.05727976397351324im -0.03897063552909268 - 0.008059185574541411im … 0.013519766755614738 + 0.015736905705081253im 0.05877747307490796 - 0.0032550847739408013im;;; -0.06321570279373605 - 0.020167812314462782im -0.04574445489420238 + 0.02920673612068545im … 0.003015817097004339 + 0.005500676143066641im -0.017970087854893527 - 0.0626409756364216im; -0.07512801599019986 + 0.03832685746260855im -0.003716223264242643 + 0.034102445113528446im … -0.015767323544774253 - 0.03714965038097273im -0.06540986945154217 - 0.030333856281543198im; … ; -0.0044492369997810866 - 0.017046973188022778im -0.037243690086748715 + 0.026350865669966535im … -0.019277554234426404 + 0.0038722158263353804im 0.0123135276831822 + 0.010402684083107055im; -0.03897816083966416 - 0.054296342323628316im -0.028018853200614476 + 0.021982672596641592im … -0.0021534596726469043 + 0.011735355847981794im 0.013006249416646666 - 0.018659206019018517im;;; -0.09868226786392892 + 0.044173611654540715im -0.028574716535366515 + 0.04401336121448581im … -0.026408922830344423 - 0.06271635367877681im -0.09967106323466965 - 0.038610004827738464im; -0.022236678510320768 + 0.05825081659337149im -0.014796665372354413 - 0.032432266952112376im … -0.07979272425675031 - 0.026735410233859468im -0.09769405476585818 + 0.03993042956965885im; … ; -0.03083187034098177 + 0.0045787500185653675im 0.0008704616668718072 + 0.0378975250657175im … 0.052222347098568614 - 0.009075365045523393im 0.012265394548961205 - 0.037368997302543436im; -0.06982314948947015 - 0.010418577123079774im -0.03901008356903205 + 0.027572632220914654im … 0.028486587825531238 - 0.05427529364483985im -0.030720939910305285 - 0.06116772502723937im;;; … ;;; 0.00012818575293858903 + 0.006726961048085615im 0.022108621537546096 - 0.007351825396808906im … 0.0676126120123862 - 0.12786532449790516im -0.012707113507289938 - 0.044178484517062674im; 0.09879082341044146 - 0.029737662238270963im 0.03713869946753607 - 0.08216098771600486im … 0.0053341152948185346 + 0.044257666034507884im 0.09076094984194052 + 0.051064730686427036im; … ; 0.046174649178148834 - 0.12520986353584607im -0.0595134307379105 - 0.09722661109762235im … 0.11824652183681879 + 0.07166472228021684im 0.1503497395943622 - 0.044258361246446776im; -0.050814612132519095 - 0.1048565477407849im -0.08171642687242534 - 0.02328782720228267im … 0.20941115213478162 - 0.06853932351981327im 0.08160189352935582 - 0.1650598864457865im;;; 0.16504493212757604 - 0.04629347396642694im 0.05145020983346342 - 0.11257861174528924im … 0.012239483488242425 + 0.014693560395220129im 0.1175885219629009 + 0.059883115319518274im; 0.07923318787573894 - 0.1375690157330789im -0.0340454627619386 - 0.07868465913384161im … 0.14658810408954587 + 0.0829504070081675im 0.2017041133148419 - 0.05930758044460423im; … ; -0.050524630598809475 - 0.05574621110033588im -0.05080471546319272 + 0.006868609156398531im … 0.19328921920023567 - 0.05120139542319438im 0.06100076594325472 - 0.1403052578496473im; 0.03245931485754737 + 0.036358898030944144im 0.049583977080194845 - 0.009975833645565152im … 0.07599196026919727 - 0.13794091651785473im -0.013747895002940774 - 0.019064561941392236im;;; 0.07129681656164895 - 0.12332374217127408im -0.03557869176702387 - 0.057513060429325226im … 0.0878915213926833 + 0.0472975717882496im 0.17045692620632685 - 0.04386673741432783im; -0.008869814558449152 - 0.05015553017998927im 0.019297294850316535 + 0.023124550402743194im … 0.13063237848687803 - 0.030914034530206535im 0.06692427649395635 - 0.0990210417287101im; … ; 0.03280358384708232 + 0.05329796170341141im 0.047140239961562705 - 0.003495969962170697im … 0.04498363727228654 - 0.08348523379859601im -0.021722843922777662 + 0.009610378612307211im; 0.15140129464075677 - 0.03738948714123941im 0.02382517847349559 - 0.08288651216973977im … 0.006461719617614956 + 0.013482452394009052im 0.0835901987890498 + 0.05799321142557616im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668707424 -11.100308396743264 … -8.289845772413665 -11.100308396743324; -11.100308396743264 -9.130057825947874 … -9.130057795896583 -11.100308356760287; … ; -8.289845772413665 -9.130057795896583 … -4.149589921645166 -6.287956198201397; -11.100308396743323 -11.100308356760289 … -6.287956198201398 -9.111848223580605;;; -11.100308396743266 -9.130057825947873 … -9.130057795896585 -11.100308356760289; -9.130057825947876 -6.903159481980906 … -9.130057827297557 -10.053883826553921; … ; -9.130057795896583 -9.130057827297557 … -5.294353669215613 -7.547399206522812; -11.100308356760287 -10.053883826553921 … -7.547399206522813 -10.053883826554026;;; -8.289845772413964 -6.3076219315161834 … -8.289845781012918 -9.111848193529273; -6.307621931516185 -4.516655665814628 … -7.547399237612644 -7.547399206523044; … ; -8.289845781012916 -7.547399237612643 … -5.768969083582029 -7.547399237612715; -9.111848193529273 -7.547399206523044 … -7.547399237612716 -9.11184822493051;;; … ;;; -5.301031718250296 -6.307621955788392 … -2.549703573277775 -3.849582179389208; -6.307621955788392 -6.903159495207735 … -3.329060698547421 -4.878419358631189; … ; -2.5497035732777746 -3.3290606985474214 … -1.2567984709042619 -1.8141947460430579; -3.849582179389209 -4.878419358631191 … -1.814194746043058 -2.714767335324527;;; -8.289845772413667 -9.130057795896583 … -4.149589921645168 -6.287956198201396; -9.130057795896585 -9.130057827297554 … -5.294353669215612 -7.547399206522811; … ; -4.149589921645168 -5.294353669215613 … -1.9094492399174021 -2.8946123678544327; -6.287956198201397 -7.547399206522811 … -2.894612367854432 -4.485542759374388;;; -11.100308396743324 -11.100308356760289 … -6.287956198201398 -9.111848223580601; -11.100308356760287 -10.053883826553921 … -7.5473992065228135 -10.053883826554026; … ; -6.287956198201396 -7.5473992065228135 … -2.894612367854432 -4.485542759374387; -9.111848223580603 -10.053883826554026 … -4.485542759374388 -6.8711045001385935])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668707424 -11.100308396743264 … -8.289845772413665 -11.100308396743324; -11.100308396743264 -9.130057825947874 … -9.130057795896583 -11.100308356760287; … ; -8.289845772413665 -9.130057795896583 … -4.149589921645166 -6.287956198201397; -11.100308396743323 -11.100308356760289 … -6.287956198201398 -9.111848223580605;;; -11.100308396743266 -9.130057825947873 … -9.130057795896585 -11.100308356760289; -9.130057825947876 -6.903159481980906 … -9.130057827297557 -10.053883826553921; … ; -9.130057795896583 -9.130057827297557 … -5.294353669215613 -7.547399206522812; -11.100308356760287 -10.053883826553921 … -7.547399206522813 -10.053883826554026;;; -8.289845772413964 -6.3076219315161834 … -8.289845781012918 -9.111848193529273; -6.307621931516185 -4.516655665814628 … -7.547399237612644 -7.547399206523044; … ; -8.289845781012916 -7.547399237612643 … -5.768969083582029 -7.547399237612715; -9.111848193529273 -7.547399206523044 … -7.547399237612716 -9.11184822493051;;; … ;;; -5.301031718250296 -6.307621955788392 … -2.549703573277775 -3.849582179389208; -6.307621955788392 -6.903159495207735 … -3.329060698547421 -4.878419358631189; … ; -2.5497035732777746 -3.3290606985474214 … -1.2567984709042619 -1.8141947460430579; -3.849582179389209 -4.878419358631191 … -1.814194746043058 -2.714767335324527;;; -8.289845772413667 -9.130057795896583 … -4.149589921645168 -6.287956198201396; -9.130057795896585 -9.130057827297554 … -5.294353669215612 -7.547399206522811; … ; -4.149589921645168 -5.294353669215613 … -1.9094492399174021 -2.8946123678544327; -6.287956198201397 -7.547399206522811 … -2.894612367854432 -4.485542759374388;;; -11.100308396743324 -11.100308356760289 … -6.287956198201398 -9.111848223580601; -11.100308356760287 -10.053883826553921 … -7.5473992065228135 -10.053883826554026; … ; -6.287956198201396 -7.5473992065228135 … -2.894612367854432 -4.485542759374387; -9.111848223580603 -10.053883826554026 … -4.485542759374388 -6.8711045001385935]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.01342469410080766 - 0.028950753698025036im 0.004018591585823223 + 0.021087280690530744im … 0.04254310117280265 - 0.005254625889065699im 0.03269974331131559 - 0.04471963876500303im; 0.005839003424014604 + 0.009537192304388119im 0.04662578024872248 + 0.004838621298210982im … 0.01661957169062718 - 0.025604319956012714im -0.000695195513813654 - 0.02493464099415036im; … ; 0.05433824782980132 - 0.003288791778445448im -0.005195068375889555 - 0.03473064536994647im … -0.012074011885725775 - 0.02611119198093998im 0.011117947344383945 + 0.0308642444084635im; 0.02640825687000845 - 0.05727976397351324im -0.03897063552909268 - 0.008059185574541411im … 0.013519766755614738 + 0.015736905705081253im 0.05877747307490796 - 0.0032550847739408013im;;; -0.06321570279373605 - 0.020167812314462782im -0.04574445489420238 + 0.02920673612068545im … 0.003015817097004339 + 0.005500676143066641im -0.017970087854893527 - 0.0626409756364216im; -0.07512801599019986 + 0.03832685746260855im -0.003716223264242643 + 0.034102445113528446im … -0.015767323544774253 - 0.03714965038097273im -0.06540986945154217 - 0.030333856281543198im; … ; -0.0044492369997810866 - 0.017046973188022778im -0.037243690086748715 + 0.026350865669966535im … -0.019277554234426404 + 0.0038722158263353804im 0.0123135276831822 + 0.010402684083107055im; -0.03897816083966416 - 0.054296342323628316im -0.028018853200614476 + 0.021982672596641592im … -0.0021534596726469043 + 0.011735355847981794im 0.013006249416646666 - 0.018659206019018517im;;; -0.09868226786392892 + 0.044173611654540715im -0.028574716535366515 + 0.04401336121448581im … -0.026408922830344423 - 0.06271635367877681im -0.09967106323466965 - 0.038610004827738464im; -0.022236678510320768 + 0.05825081659337149im -0.014796665372354413 - 0.032432266952112376im … -0.07979272425675031 - 0.026735410233859468im -0.09769405476585818 + 0.03993042956965885im; … ; -0.03083187034098177 + 0.0045787500185653675im 0.0008704616668718072 + 0.0378975250657175im … 0.052222347098568614 - 0.009075365045523393im 0.012265394548961205 - 0.037368997302543436im; -0.06982314948947015 - 0.010418577123079774im -0.03901008356903205 + 0.027572632220914654im … 0.028486587825531238 - 0.05427529364483985im -0.030720939910305285 - 0.06116772502723937im;;; … ;;; 0.00012818575293858903 + 0.006726961048085615im 0.022108621537546096 - 0.007351825396808906im … 0.0676126120123862 - 0.12786532449790516im -0.012707113507289938 - 0.044178484517062674im; 0.09879082341044146 - 0.029737662238270963im 0.03713869946753607 - 0.08216098771600486im … 0.0053341152948185346 + 0.044257666034507884im 0.09076094984194052 + 0.051064730686427036im; … ; 0.046174649178148834 - 0.12520986353584607im -0.0595134307379105 - 0.09722661109762235im … 0.11824652183681879 + 0.07166472228021684im 0.1503497395943622 - 0.044258361246446776im; -0.050814612132519095 - 0.1048565477407849im -0.08171642687242534 - 0.02328782720228267im … 0.20941115213478162 - 0.06853932351981327im 0.08160189352935582 - 0.1650598864457865im;;; 0.16504493212757604 - 0.04629347396642694im 0.05145020983346342 - 0.11257861174528924im … 0.012239483488242425 + 0.014693560395220129im 0.1175885219629009 + 0.059883115319518274im; 0.07923318787573894 - 0.1375690157330789im -0.0340454627619386 - 0.07868465913384161im … 0.14658810408954587 + 0.0829504070081675im 0.2017041133148419 - 0.05930758044460423im; … ; -0.050524630598809475 - 0.05574621110033588im -0.05080471546319272 + 0.006868609156398531im … 0.19328921920023567 - 0.05120139542319438im 0.06100076594325472 - 0.1403052578496473im; 0.03245931485754737 + 0.036358898030944144im 0.049583977080194845 - 0.009975833645565152im … 0.07599196026919727 - 0.13794091651785473im -0.013747895002940774 - 0.019064561941392236im;;; 0.07129681656164895 - 0.12332374217127408im -0.03557869176702387 - 0.057513060429325226im … 0.0878915213926833 + 0.0472975717882496im 0.17045692620632685 - 0.04386673741432783im; -0.008869814558449152 - 0.05015553017998927im 0.019297294850316535 + 0.023124550402743194im … 0.13063237848687803 - 0.030914034530206535im 0.06692427649395635 - 0.0990210417287101im; … ; 0.03280358384708232 + 0.05329796170341141im 0.047140239961562705 - 0.003495969962170697im … 0.04498363727228654 - 0.08348523379859601im -0.021722843922777662 + 0.009610378612307211im; 0.15140129464075677 - 0.03738948714123941im 0.02382517847349559 - 0.08288651216973977im … 0.006461719617614956 + 0.013482452394009052im 0.0835901987890498 + 0.05799321142557616im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668707424 -11.100308396743264 … -8.289845772413665 -11.100308396743324; -11.100308396743264 -9.130057825947874 … -9.130057795896583 -11.100308356760287; … ; -8.289845772413665 -9.130057795896583 … -4.149589921645166 -6.287956198201397; -11.100308396743323 -11.100308356760289 … -6.287956198201398 -9.111848223580605;;; -11.100308396743266 -9.130057825947873 … -9.130057795896585 -11.100308356760289; -9.130057825947876 -6.903159481980906 … -9.130057827297557 -10.053883826553921; … ; -9.130057795896583 -9.130057827297557 … -5.294353669215613 -7.547399206522812; -11.100308356760287 -10.053883826553921 … -7.547399206522813 -10.053883826554026;;; -8.289845772413964 -6.3076219315161834 … -8.289845781012918 -9.111848193529273; -6.307621931516185 -4.516655665814628 … -7.547399237612644 -7.547399206523044; … ; -8.289845781012916 -7.547399237612643 … -5.768969083582029 -7.547399237612715; -9.111848193529273 -7.547399206523044 … -7.547399237612716 -9.11184822493051;;; … ;;; -5.301031718250296 -6.307621955788392 … -2.549703573277775 -3.849582179389208; -6.307621955788392 -6.903159495207735 … -3.329060698547421 -4.878419358631189; … ; -2.5497035732777746 -3.3290606985474214 … -1.2567984709042619 -1.8141947460430579; -3.849582179389209 -4.878419358631191 … -1.814194746043058 -2.714767335324527;;; -8.289845772413667 -9.130057795896583 … -4.149589921645168 -6.287956198201396; -9.130057795896585 -9.130057827297554 … -5.294353669215612 -7.547399206522811; … ; -4.149589921645168 -5.294353669215613 … -1.9094492399174021 -2.8946123678544327; -6.287956198201397 -7.547399206522811 … -2.894612367854432 -4.485542759374388;;; -11.100308396743324 -11.100308356760289 … -6.287956198201398 -9.111848223580601; -11.100308356760287 -10.053883826553921 … -7.5473992065228135 -10.053883826554026; … ; -6.287956198201396 -7.5473992065228135 … -2.894612367854432 -4.485542759374387; -9.111848223580603 -10.053883826554026 … -4.485542759374388 -6.8711045001385935])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668707424 -11.100308396743264 … -8.289845772413665 -11.100308396743324; -11.100308396743264 -9.130057825947874 … -9.130057795896583 -11.100308356760287; … ; -8.289845772413665 -9.130057795896583 … -4.149589921645166 -6.287956198201397; -11.100308396743323 -11.100308356760289 … -6.287956198201398 -9.111848223580605;;; -11.100308396743266 -9.130057825947873 … -9.130057795896585 -11.100308356760289; -9.130057825947876 -6.903159481980906 … -9.130057827297557 -10.053883826553921; … ; -9.130057795896583 -9.130057827297557 … -5.294353669215613 -7.547399206522812; -11.100308356760287 -10.053883826553921 … -7.547399206522813 -10.053883826554026;;; -8.289845772413964 -6.3076219315161834 … -8.289845781012918 -9.111848193529273; -6.307621931516185 -4.516655665814628 … -7.547399237612644 -7.547399206523044; … ; -8.289845781012916 -7.547399237612643 … -5.768969083582029 -7.547399237612715; -9.111848193529273 -7.547399206523044 … -7.547399237612716 -9.11184822493051;;; … ;;; -5.301031718250296 -6.307621955788392 … -2.549703573277775 -3.849582179389208; -6.307621955788392 -6.903159495207735 … -3.329060698547421 -4.878419358631189; … ; -2.5497035732777746 -3.3290606985474214 … -1.2567984709042619 -1.8141947460430579; -3.849582179389209 -4.878419358631191 … -1.814194746043058 -2.714767335324527;;; -8.289845772413667 -9.130057795896583 … -4.149589921645168 -6.287956198201396; -9.130057795896585 -9.130057827297554 … -5.294353669215612 -7.547399206522811; … ; -4.149589921645168 -5.294353669215613 … -1.9094492399174021 -2.8946123678544327; -6.287956198201397 -7.547399206522811 … -2.894612367854432 -4.485542759374388;;; -11.100308396743324 -11.100308356760289 … -6.287956198201398 -9.111848223580601; -11.100308356760287 -10.053883826553921 … -7.5473992065228135 -10.053883826554026; … ; -6.287956198201396 -7.5473992065228135 … -2.894612367854432 -4.485542759374387; -9.111848223580603 -10.053883826554026 … -4.485542759374388 -6.8711045001385935]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.01342469410080766 - 0.028950753698025036im 0.004018591585823223 + 0.021087280690530744im … 0.04254310117280265 - 0.005254625889065699im 0.03269974331131559 - 0.04471963876500303im; 0.005839003424014604 + 0.009537192304388119im 0.04662578024872248 + 0.004838621298210982im … 0.01661957169062718 - 0.025604319956012714im -0.000695195513813654 - 0.02493464099415036im; … ; 0.05433824782980132 - 0.003288791778445448im -0.005195068375889555 - 0.03473064536994647im … -0.012074011885725775 - 0.02611119198093998im 0.011117947344383945 + 0.0308642444084635im; 0.02640825687000845 - 0.05727976397351324im -0.03897063552909268 - 0.008059185574541411im … 0.013519766755614738 + 0.015736905705081253im 0.05877747307490796 - 0.0032550847739408013im;;; -0.06321570279373605 - 0.020167812314462782im -0.04574445489420238 + 0.02920673612068545im … 0.003015817097004339 + 0.005500676143066641im -0.017970087854893527 - 0.0626409756364216im; -0.07512801599019986 + 0.03832685746260855im -0.003716223264242643 + 0.034102445113528446im … -0.015767323544774253 - 0.03714965038097273im -0.06540986945154217 - 0.030333856281543198im; … ; -0.0044492369997810866 - 0.017046973188022778im -0.037243690086748715 + 0.026350865669966535im … -0.019277554234426404 + 0.0038722158263353804im 0.0123135276831822 + 0.010402684083107055im; -0.03897816083966416 - 0.054296342323628316im -0.028018853200614476 + 0.021982672596641592im … -0.0021534596726469043 + 0.011735355847981794im 0.013006249416646666 - 0.018659206019018517im;;; -0.09868226786392892 + 0.044173611654540715im -0.028574716535366515 + 0.04401336121448581im … -0.026408922830344423 - 0.06271635367877681im -0.09967106323466965 - 0.038610004827738464im; -0.022236678510320768 + 0.05825081659337149im -0.014796665372354413 - 0.032432266952112376im … -0.07979272425675031 - 0.026735410233859468im -0.09769405476585818 + 0.03993042956965885im; … ; -0.03083187034098177 + 0.0045787500185653675im 0.0008704616668718072 + 0.0378975250657175im … 0.052222347098568614 - 0.009075365045523393im 0.012265394548961205 - 0.037368997302543436im; -0.06982314948947015 - 0.010418577123079774im -0.03901008356903205 + 0.027572632220914654im … 0.028486587825531238 - 0.05427529364483985im -0.030720939910305285 - 0.06116772502723937im;;; … ;;; 0.00012818575293858903 + 0.006726961048085615im 0.022108621537546096 - 0.007351825396808906im … 0.0676126120123862 - 0.12786532449790516im -0.012707113507289938 - 0.044178484517062674im; 0.09879082341044146 - 0.029737662238270963im 0.03713869946753607 - 0.08216098771600486im … 0.0053341152948185346 + 0.044257666034507884im 0.09076094984194052 + 0.051064730686427036im; … ; 0.046174649178148834 - 0.12520986353584607im -0.0595134307379105 - 0.09722661109762235im … 0.11824652183681879 + 0.07166472228021684im 0.1503497395943622 - 0.044258361246446776im; -0.050814612132519095 - 0.1048565477407849im -0.08171642687242534 - 0.02328782720228267im … 0.20941115213478162 - 0.06853932351981327im 0.08160189352935582 - 0.1650598864457865im;;; 0.16504493212757604 - 0.04629347396642694im 0.05145020983346342 - 0.11257861174528924im … 0.012239483488242425 + 0.014693560395220129im 0.1175885219629009 + 0.059883115319518274im; 0.07923318787573894 - 0.1375690157330789im -0.0340454627619386 - 0.07868465913384161im … 0.14658810408954587 + 0.0829504070081675im 0.2017041133148419 - 0.05930758044460423im; … ; -0.050524630598809475 - 0.05574621110033588im -0.05080471546319272 + 0.006868609156398531im … 0.19328921920023567 - 0.05120139542319438im 0.06100076594325472 - 0.1403052578496473im; 0.03245931485754737 + 0.036358898030944144im 0.049583977080194845 - 0.009975833645565152im … 0.07599196026919727 - 0.13794091651785473im -0.013747895002940774 - 0.019064561941392236im;;; 0.07129681656164895 - 0.12332374217127408im -0.03557869176702387 - 0.057513060429325226im … 0.0878915213926833 + 0.0472975717882496im 0.17045692620632685 - 0.04386673741432783im; -0.008869814558449152 - 0.05015553017998927im 0.019297294850316535 + 0.023124550402743194im … 0.13063237848687803 - 0.030914034530206535im 0.06692427649395635 - 0.0990210417287101im; … ; 0.03280358384708232 + 0.05329796170341141im 0.047140239961562705 - 0.003495969962170697im … 0.04498363727228654 - 0.08348523379859601im -0.021722843922777662 + 0.009610378612307211im; 0.15140129464075677 - 0.03738948714123941im 0.02382517847349559 - 0.08288651216973977im … 0.006461719617614956 + 0.013482452394009052im 0.0835901987890498 + 0.05799321142557616im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668707424 -11.100308396743264 … -8.289845772413665 -11.100308396743324; -11.100308396743264 -9.130057825947874 … -9.130057795896583 -11.100308356760287; … ; -8.289845772413665 -9.130057795896583 … -4.149589921645166 -6.287956198201397; -11.100308396743323 -11.100308356760289 … -6.287956198201398 -9.111848223580605;;; -11.100308396743266 -9.130057825947873 … -9.130057795896585 -11.100308356760289; -9.130057825947876 -6.903159481980906 … -9.130057827297557 -10.053883826553921; … ; -9.130057795896583 -9.130057827297557 … -5.294353669215613 -7.547399206522812; -11.100308356760287 -10.053883826553921 … -7.547399206522813 -10.053883826554026;;; -8.289845772413964 -6.3076219315161834 … -8.289845781012918 -9.111848193529273; -6.307621931516185 -4.516655665814628 … -7.547399237612644 -7.547399206523044; … ; -8.289845781012916 -7.547399237612643 … -5.768969083582029 -7.547399237612715; -9.111848193529273 -7.547399206523044 … -7.547399237612716 -9.11184822493051;;; … ;;; -5.301031718250296 -6.307621955788392 … -2.549703573277775 -3.849582179389208; -6.307621955788392 -6.903159495207735 … -3.329060698547421 -4.878419358631189; … ; -2.5497035732777746 -3.3290606985474214 … -1.2567984709042619 -1.8141947460430579; -3.849582179389209 -4.878419358631191 … -1.814194746043058 -2.714767335324527;;; -8.289845772413667 -9.130057795896583 … -4.149589921645168 -6.287956198201396; -9.130057795896585 -9.130057827297554 … -5.294353669215612 -7.547399206522811; … ; -4.149589921645168 -5.294353669215613 … -1.9094492399174021 -2.8946123678544327; -6.287956198201397 -7.547399206522811 … -2.894612367854432 -4.485542759374388;;; -11.100308396743324 -11.100308356760289 … -6.287956198201398 -9.111848223580601; -11.100308356760287 -10.053883826553921 … -7.5473992065228135 -10.053883826554026; … ; -6.287956198201396 -7.5473992065228135 … -2.894612367854432 -4.485542759374387; -9.111848223580603 -10.053883826554026 … -4.485542759374388 -6.8711045001385935])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668707424 -11.100308396743264 … -8.289845772413665 -11.100308396743324; -11.100308396743264 -9.130057825947874 … -9.130057795896583 -11.100308356760287; … ; -8.289845772413665 -9.130057795896583 … -4.149589921645166 -6.287956198201397; -11.100308396743323 -11.100308356760289 … -6.287956198201398 -9.111848223580605;;; -11.100308396743266 -9.130057825947873 … -9.130057795896585 -11.100308356760289; -9.130057825947876 -6.903159481980906 … -9.130057827297557 -10.053883826553921; … ; -9.130057795896583 -9.130057827297557 … -5.294353669215613 -7.547399206522812; -11.100308356760287 -10.053883826553921 … -7.547399206522813 -10.053883826554026;;; -8.289845772413964 -6.3076219315161834 … -8.289845781012918 -9.111848193529273; -6.307621931516185 -4.516655665814628 … -7.547399237612644 -7.547399206523044; … ; -8.289845781012916 -7.547399237612643 … -5.768969083582029 -7.547399237612715; -9.111848193529273 -7.547399206523044 … -7.547399237612716 -9.11184822493051;;; … ;;; -5.301031718250296 -6.307621955788392 … -2.549703573277775 -3.849582179389208; -6.307621955788392 -6.903159495207735 … -3.329060698547421 -4.878419358631189; … ; -2.5497035732777746 -3.3290606985474214 … -1.2567984709042619 -1.8141947460430579; -3.849582179389209 -4.878419358631191 … -1.814194746043058 -2.714767335324527;;; -8.289845772413667 -9.130057795896583 … -4.149589921645168 -6.287956198201396; -9.130057795896585 -9.130057827297554 … -5.294353669215612 -7.547399206522811; … ; -4.149589921645168 -5.294353669215613 … -1.9094492399174021 -2.8946123678544327; -6.287956198201397 -7.547399206522811 … -2.894612367854432 -4.485542759374388;;; -11.100308396743324 -11.100308356760289 … -6.287956198201398 -9.111848223580601; -11.100308356760287 -10.053883826553921 … -7.5473992065228135 -10.053883826554026; … ; -6.287956198201396 -7.5473992065228135 … -2.894612367854432 -4.485542759374387; -9.111848223580603 -10.053883826554026 … -4.485542759374388 -6.8711045001385935]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.01342469410080766 - 0.028950753698025036im 0.004018591585823223 + 0.021087280690530744im … 0.04254310117280265 - 0.005254625889065699im 0.03269974331131559 - 0.04471963876500303im; 0.005839003424014604 + 0.009537192304388119im 0.04662578024872248 + 0.004838621298210982im … 0.01661957169062718 - 0.025604319956012714im -0.000695195513813654 - 0.02493464099415036im; … ; 0.05433824782980132 - 0.003288791778445448im -0.005195068375889555 - 0.03473064536994647im … -0.012074011885725775 - 0.02611119198093998im 0.011117947344383945 + 0.0308642444084635im; 0.02640825687000845 - 0.05727976397351324im -0.03897063552909268 - 0.008059185574541411im … 0.013519766755614738 + 0.015736905705081253im 0.05877747307490796 - 0.0032550847739408013im;;; -0.06321570279373605 - 0.020167812314462782im -0.04574445489420238 + 0.02920673612068545im … 0.003015817097004339 + 0.005500676143066641im -0.017970087854893527 - 0.0626409756364216im; -0.07512801599019986 + 0.03832685746260855im -0.003716223264242643 + 0.034102445113528446im … -0.015767323544774253 - 0.03714965038097273im -0.06540986945154217 - 0.030333856281543198im; … ; -0.0044492369997810866 - 0.017046973188022778im -0.037243690086748715 + 0.026350865669966535im … -0.019277554234426404 + 0.0038722158263353804im 0.0123135276831822 + 0.010402684083107055im; -0.03897816083966416 - 0.054296342323628316im -0.028018853200614476 + 0.021982672596641592im … -0.0021534596726469043 + 0.011735355847981794im 0.013006249416646666 - 0.018659206019018517im;;; -0.09868226786392892 + 0.044173611654540715im -0.028574716535366515 + 0.04401336121448581im … -0.026408922830344423 - 0.06271635367877681im -0.09967106323466965 - 0.038610004827738464im; -0.022236678510320768 + 0.05825081659337149im -0.014796665372354413 - 0.032432266952112376im … -0.07979272425675031 - 0.026735410233859468im -0.09769405476585818 + 0.03993042956965885im; … ; -0.03083187034098177 + 0.0045787500185653675im 0.0008704616668718072 + 0.0378975250657175im … 0.052222347098568614 - 0.009075365045523393im 0.012265394548961205 - 0.037368997302543436im; -0.06982314948947015 - 0.010418577123079774im -0.03901008356903205 + 0.027572632220914654im … 0.028486587825531238 - 0.05427529364483985im -0.030720939910305285 - 0.06116772502723937im;;; … ;;; 0.00012818575293858903 + 0.006726961048085615im 0.022108621537546096 - 0.007351825396808906im … 0.0676126120123862 - 0.12786532449790516im -0.012707113507289938 - 0.044178484517062674im; 0.09879082341044146 - 0.029737662238270963im 0.03713869946753607 - 0.08216098771600486im … 0.0053341152948185346 + 0.044257666034507884im 0.09076094984194052 + 0.051064730686427036im; … ; 0.046174649178148834 - 0.12520986353584607im -0.0595134307379105 - 0.09722661109762235im … 0.11824652183681879 + 0.07166472228021684im 0.1503497395943622 - 0.044258361246446776im; -0.050814612132519095 - 0.1048565477407849im -0.08171642687242534 - 0.02328782720228267im … 0.20941115213478162 - 0.06853932351981327im 0.08160189352935582 - 0.1650598864457865im;;; 0.16504493212757604 - 0.04629347396642694im 0.05145020983346342 - 0.11257861174528924im … 0.012239483488242425 + 0.014693560395220129im 0.1175885219629009 + 0.059883115319518274im; 0.07923318787573894 - 0.1375690157330789im -0.0340454627619386 - 0.07868465913384161im … 0.14658810408954587 + 0.0829504070081675im 0.2017041133148419 - 0.05930758044460423im; … ; -0.050524630598809475 - 0.05574621110033588im -0.05080471546319272 + 0.006868609156398531im … 0.19328921920023567 - 0.05120139542319438im 0.06100076594325472 - 0.1403052578496473im; 0.03245931485754737 + 0.036358898030944144im 0.049583977080194845 - 0.009975833645565152im … 0.07599196026919727 - 0.13794091651785473im -0.013747895002940774 - 0.019064561941392236im;;; 0.07129681656164895 - 0.12332374217127408im -0.03557869176702387 - 0.057513060429325226im … 0.0878915213926833 + 0.0472975717882496im 0.17045692620632685 - 0.04386673741432783im; -0.008869814558449152 - 0.05015553017998927im 0.019297294850316535 + 0.023124550402743194im … 0.13063237848687803 - 0.030914034530206535im 0.06692427649395635 - 0.0990210417287101im; … ; 0.03280358384708232 + 0.05329796170341141im 0.047140239961562705 - 0.003495969962170697im … 0.04498363727228654 - 0.08348523379859601im -0.021722843922777662 + 0.009610378612307211im; 0.15140129464075677 - 0.03738948714123941im 0.02382517847349559 - 0.08288651216973977im … 0.006461719617614956 + 0.013482452394009052im 0.0835901987890498 + 0.05799321142557616im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488507), converged = true, ρ = [7.589784535115394e-5 0.001126271272822873 … 0.006697037550064267 0.0011262712728228833; 0.0011262712728228766 0.005274334457254161 … 0.005274334457254205 0.0011262712728228664; … ; 0.006697037550064276 0.0052743344572542 … 0.023244754191277212 0.012258986825381051; 0.0011262712728228885 0.0011262712728228833 … 0.012258986825381063 0.0037700086300234896;;; 0.0011262712728228729 0.00527433445725418 … 0.0052743344572542036 0.0011262712728228829; 0.005274334457254184 0.014620065304210469 … 0.005274334457254207 0.0025880808748723894; … ; 0.005274334457254212 0.005274334457254203 … 0.01810768664613525 0.008922003044721311; 0.001126271272822887 0.002588080874872408 … 0.008922003044721325 0.0025880808748724245;;; 0.006697037550064233 0.016412109101191296 … 0.00669703755006426 0.0037700086300234592; 0.016412109101191296 0.03127783931501179 … 0.008922003044721292 0.008922003044721261; … ; 0.006697037550064268 0.008922003044721287 … 0.016476756359342 0.00892200304472131; 0.0037700086300234627 0.008922003044721278 … 0.008922003044721323 0.0037700086300234826;;; … ;;; 0.019853839853203818 0.016412109101191317 … 0.03715667363602708 0.027190800686663158; 0.016412109101191317 0.01462006530421047 … 0.03230127212646065 0.022322100931512403; … ; 0.037156673636027086 0.03230127212646064 … 0.046296980702171565 0.04263658273207802; 0.027190800686663165 0.022322100931512417 … 0.042636582732078036 0.03477222914239523;;; 0.006697037550064245 0.005274334457254188 … 0.023244754191277188 0.012258986825381029; 0.005274334457254191 0.0052743344572541645 … 0.018107686646135223 0.008922003044721275; … ; 0.02324475419127719 0.018107686646135216 … 0.04037111033624991 0.03149160381186313; 0.012258986825381036 0.008922003044721292 … 0.031491603811863146 0.020047163433053232;;; 0.001126271272822877 0.0011262712728228757 … 0.012258986825381039 0.003770008630023473; 0.0011262712728228792 0.00258808087487238 … 0.008922003044721308 0.0025880808748723937; … ; 0.012258986825381046 0.0089220030447213 … 0.03149160381186314 0.02004716343305323; 0.0037700086300234796 0.0025880808748724123 … 0.020047163433053242 0.008952603497043672;;;;], eigenvalues = [[-0.17836835653671745, 0.26249194499486433, 0.26249194499486467, 0.26249194499486495, 0.3546921481693393, 0.3546921481693401, 0.3546921481794897], [-0.12755037617653348, 0.06475320594941203, 0.225451665177178, 0.22545166517717818, 0.3219776496131764, 0.3892227690866253, 0.3892227690866275], [-0.1081872921624258, 0.07755003473717113, 0.1727832801174108, 0.1727832801174109, 0.2843518536216748, 0.33054764843485673, 0.5267232426553392], [-0.057773253741615294, 0.012724782208232975, 0.09766073750363713, 0.18417825333248902, 0.31522841796172113, 0.4720312207405499, 0.49791351779729626]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993082699, n_iter = 9, ψ = Matrix{ComplexF64}[[0.41072938896670186 + 0.8561571446078416im -2.5844534540810623e-12 - 5.523599135372726e-13im … -1.101529928460065e-12 + 5.032600399484021e-12im -2.2912295861744653e-7 + 5.321552120216399e-8im; 0.09373032278243276 + 0.032954874967547614im -0.09647446327945783 - 0.37291914872522414im … -0.2117394340091825 - 0.49719982583344924im 0.04418754333745462 - 0.11167170616935668im; … ; -0.005085807272140792 - 0.01060126289859199im 0.03182583765781057 - 0.024222340302317954im … -0.02083615228099186 + 0.09015092556853371im 0.025443878594373956 - 0.027729839840179068im; 0.09373032278302466 + 0.03295487496702386im 0.14547929975597707 + 0.011686459522419252im … 0.19941523448939674 + 0.16114258854731034im 0.030629887811032906 - 0.4270800248549651im], [-0.9192998606579238 - 0.05971903160884338im 0.156156945381325 - 0.12975569384793545im … -5.87430786112259e-11 + 1.224137359364526e-10im 5.078629382518834e-10 + 5.945773582927417e-11im; -0.047004613934882325 + 0.04127015866033408im -0.000828400728189198 + 0.008971174651700112im … -6.9349088812033826e-12 - 4.2710247258483984e-11im -8.375251230688892e-12 - 1.9344377452004868e-10im; … ; 0.004931876525056837 + 0.0003203817412598089im -0.06502113223752526 + 0.054028094028301415im … 0.04198054450807187 + 0.004660343501886943im -0.09285029633482493 - 0.026525437694345556im; -0.0878548846957421 + 0.07713678992234872im 0.00920594916149358 - 0.09969592608308073im … 0.14583372593471208 - 0.11669038239916593im -0.37325627047397203 + 0.2073802614159097im], [-0.04247541090033811 + 0.9245580034956127im 2.497184184564611e-13 + 1.5398351122004738e-13im … -2.51727679587049e-10 + 6.68458391437456e-11im -3.0669205053241934e-8 - 2.749493067478003e-8im; 0.04618559552523207 + 0.05063359657186472im -0.04569262218571431 - 0.025232322907471818im … -0.025693652411571087 - 0.0037144989091685557im -0.0013082299863027406 + 0.0021929417588650866im; … ; 0.00048622976439777573 - 0.010583714443596536im 2.3012072585343536e-12 + 3.858333405625585e-12im … -3.427298263395015e-10 + 9.398530942954688e-10im 0.03338811315021699 + 0.042616401907794046im; 0.10798821277617053 + 0.11838824503797882im 0.2567019140356685 + 0.14175561120135535im … -0.36826614108057215 - 0.05323976396963748im 0.15443557399474991 + 0.01954334800535474im], [-0.09645616033017435 - 0.7934831932470692im -7.740753637519295e-13 - 1.989972356520076e-13im … -0.0039665020784039285 + 0.18162158009674323im 5.235954370013883e-6 - 1.1731554234699316e-6im; -0.30849681900087733 - 0.24162390566162836im 0.3692293529128866 + 0.49902595284976836im … -0.1258629412784807 - 0.13147746490047027im -1.5211140689948958e-6 + 3.2761956912092614e-6im; … ; 0.0015990463737481542 + 0.013154332672907507im 3.753547795014277e-5 - 0.0002510880706337319im … 0.00028195778070952827 - 0.013046734248483172im 0.015270626673620554 + 0.043498764831548284im; -0.05281891212312719 - 0.04136934663347651im -0.003160315259539187 - 0.004271272918459641im … -0.09921379920992066 - 0.10361998272057472im 0.4247821530797725 + 0.20404945350392525im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653671745, 0.26249194499486433, 0.26249194499486467, 0.26249194499486495, 0.3546921481693393, 0.3546921481693401, 0.3546921481794897], [-0.12755037617653348, 0.06475320594941203, 0.225451665177178, 0.22545166517717818, 0.3219776496131764, 0.3892227690866253, 0.3892227690866275], [-0.1081872921624258, 0.07755003473717113, 0.1727832801174108, 0.1727832801174109, 0.2843518536216748, 0.33054764843485673, 0.5267232426553392], [-0.057773253741615294, 0.012724782208232975, 0.09766073750363713, 0.18417825333248902, 0.31522841796172113, 0.4720312207405499, 0.49791351779729626]], X = [[0.41072938896670186 + 0.8561571446078416im -2.5844534540810623e-12 - 5.523599135372726e-13im … -1.101529928460065e-12 + 5.032600399484021e-12im -2.2912295861744653e-7 + 5.321552120216399e-8im; 0.09373032278243276 + 0.032954874967547614im -0.09647446327945783 - 0.37291914872522414im … -0.2117394340091825 - 0.49719982583344924im 0.04418754333745462 - 0.11167170616935668im; … ; -0.005085807272140792 - 0.01060126289859199im 0.03182583765781057 - 0.024222340302317954im … -0.02083615228099186 + 0.09015092556853371im 0.025443878594373956 - 0.027729839840179068im; 0.09373032278302466 + 0.03295487496702386im 0.14547929975597707 + 0.011686459522419252im … 0.19941523448939674 + 0.16114258854731034im 0.030629887811032906 - 0.4270800248549651im], [-0.9192998606579238 - 0.05971903160884338im 0.156156945381325 - 0.12975569384793545im … -5.87430786112259e-11 + 1.224137359364526e-10im 5.078629382518834e-10 + 5.945773582927417e-11im; -0.047004613934882325 + 0.04127015866033408im -0.000828400728189198 + 0.008971174651700112im … -6.9349088812033826e-12 - 4.2710247258483984e-11im -8.375251230688892e-12 - 1.9344377452004868e-10im; … ; 0.004931876525056837 + 0.0003203817412598089im -0.06502113223752526 + 0.054028094028301415im … 0.04198054450807187 + 0.004660343501886943im -0.09285029633482493 - 0.026525437694345556im; -0.0878548846957421 + 0.07713678992234872im 0.00920594916149358 - 0.09969592608308073im … 0.14583372593471208 - 0.11669038239916593im -0.37325627047397203 + 0.2073802614159097im], [-0.04247541090033811 + 0.9245580034956127im 2.497184184564611e-13 + 1.5398351122004738e-13im … -2.51727679587049e-10 + 6.68458391437456e-11im -3.0669205053241934e-8 - 2.749493067478003e-8im; 0.04618559552523207 + 0.05063359657186472im -0.04569262218571431 - 0.025232322907471818im … -0.025693652411571087 - 0.0037144989091685557im -0.0013082299863027406 + 0.0021929417588650866im; … ; 0.00048622976439777573 - 0.010583714443596536im 2.3012072585343536e-12 + 3.858333405625585e-12im … -3.427298263395015e-10 + 9.398530942954688e-10im 0.03338811315021699 + 0.042616401907794046im; 0.10798821277617053 + 0.11838824503797882im 0.2567019140356685 + 0.14175561120135535im … -0.36826614108057215 - 0.05323976396963748im 0.15443557399474991 + 0.01954334800535474im], [-0.09645616033017435 - 0.7934831932470692im -7.740753637519295e-13 - 1.989972356520076e-13im … -0.0039665020784039285 + 0.18162158009674323im 5.235954370013883e-6 - 1.1731554234699316e-6im; -0.30849681900087733 - 0.24162390566162836im 0.3692293529128866 + 0.49902595284976836im … -0.1258629412784807 - 0.13147746490047027im -1.5211140689948958e-6 + 3.2761956912092614e-6im; … ; 0.0015990463737481542 + 0.013154332672907507im 3.753547795014277e-5 - 0.0002510880706337319im … 0.00028195778070952827 - 0.013046734248483172im 0.015270626673620554 + 0.043498764831548284im; -0.05281891212312719 - 0.04136934663347651im -0.003160315259539187 - 0.004271272918459641im … -0.09921379920992066 - 0.10361998272057472im 0.4247821530797725 + 0.20404945350392525im]], residual_norms = [[0.0, 8.785763991917263e-11, 6.635011119153529e-11, 3.7285363341719795e-11, 1.2933499365917155e-11, 2.390031534057545e-11, 4.0892660275289726e-6], [1.7260105988714155e-11, 2.613605365325536e-11, 1.1060516784797294e-10, 1.100401580442974e-10, 8.96175896865344e-9, 7.718010579944999e-8, 9.098462085779078e-8], [7.455719690967749e-11, 5.3362610243221956e-11, 4.3520921045773064e-11, 5.645386456788158e-11, 5.801028926110398e-10, 1.3770619134513122e-8, 4.777650153433292e-6], [6.497589374836558e-11, 3.892511928548691e-11, 2.61158645009895e-11, 7.043132125809236e-11, 2.199225647336531e-9, 3.912049285003858e-5, 1.2455298803499212e-5]], n_iter = [4, 2, 2, 2], converged = 1, n_matvec = 96)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.210686717134428, 0.027587720516124542, 0.002302457930571937, 0.00025745555650263664, 8.92065138370974e-6, 8.295022923223586e-7, 3.9963463981068636e-8, 3.912704581528242e-9, 9.395410665331759e-11], history_Etot = [-7.905267626187542, -7.910544653772286, -7.910593459405133, -7.910594393530096, -7.910594396450792, -7.910594396488433, -7.910594396488507, -7.910594396488507, -7.910594396488507], occupation_threshold = 1.0e-6, seed = 0xf540df1ec676ab58, runtime_ns = 0x000000007c6a4f7e)