Hubbard correction (DFT+U)

In this example, we'll plot the DOS and projected DOS of Nickel Oxide with and without the Hubbard term correction.

using DFTK
using PseudoPotentialData
using Unitful
using UnitfulAtomic
using Plots

Define the geometry and pseudopotential

a = 7.9  # Nickel Oxide lattice constant in Bohr
lattice = a * [[ 1.0  0.5  0.5];
               [ 0.5  1.0  0.5];
               [ 0.5  0.5  1.0]]
pseudopotentials = PseudoFamily("dojo.nc.sr.pbe.v0_4_1.standard.upf")
Ni = ElementPsp(:Ni, pseudopotentials)
O  = ElementPsp(:O, pseudopotentials)
atoms = [Ni, O, Ni, O]
positions = [zeros(3), ones(3) / 4, ones(3) / 2, ones(3) * 3 / 4]
magnetic_moments = [2, 0, -1, 0]
4-element Vector{Int64}:
  2
  0
 -1
  0

First, we run an SCF and band computation without the Hubbard term

model = model_DFT(lattice, atoms, positions; temperature=5e-3,
                  functionals=PBE(), magnetic_moments)
basis = PlaneWaveBasis(model; Ecut=20, kgrid=[2, 2, 2])
scfres = self_consistent_field(basis; tol=1e-6, ρ=guess_density(basis, magnetic_moments))
bands = compute_bands(scfres, MonkhorstPack(4, 4, 4))
lowest_unocc_band = findfirst(ε -> ε-bands.εF > 0, bands.eigenvalues[1])
band_gap = bands.eigenvalues[1][lowest_unocc_band] - bands.eigenvalues[1][lowest_unocc_band-1]
0.08219293437525416

Then we plot the DOS and the PDOS for the relevant 3D (pseudo)atomic projector

εF = bands.εF
width = 5.0u"eV"
εrange = (εF - austrip(width), εF + austrip(width))
p = plot_dos(bands; εrange, colors=[:red, :red])
plot_pdos(bands; p, iatom=1, label="3D", colors=[:yellow, :orange], εrange)
Example block output

To perform and Hubbard computation, we have to define the Hubbard manifold and associated constant.

In DFTK there are a few ways to construct the OrbitalManifold. Here, we will apply the Hubbard correction on the 3D orbital of all nickel atoms. To select all nickel atoms, we can:

  • Pass the Ni element directly.
  • Pass the :Ni symbol.
  • Pass the list of atom indices, here [1, 3].

To select the orbitals, it is recommended to use their label, such as "3D" for PseudoDojo pseudopotentials.

Note that "manifold" is the standard term used in the literature for the set of atomic orbitals used to compute the Hubbard correction, but it is not meant in the mathematical sense.

U = 10u"eV"
# Alternative:
# manifold = OrbitalManifold(:Ni, "3D")
# Alternative:
# manifold = OrbitalManifold([1, 3], "3D")
manifold = OrbitalManifold(Ni, "3D")
OrbitalManifold(Ni, "3D")

Run SCF with a DFT+U setup, notice the extra_terms keyword argument, setting up the Hubbard +U term. It is also possible to set up multiple manifolds with different U values by passing each pair as a separate entry in the Hubbard constructor (i.e. Hubbard(manifold1 => U1, manifold2 => U2, etc.)) or as two vectors (i.e. Hubbard([manifold1, manifold2, etc.], [U1, U2, etc.])).

model = model_DFT(lattice, atoms, positions; extra_terms=[Hubbard(manifold => U)],
                  functionals=PBE(), temperature=5e-3, magnetic_moments)
basis = PlaneWaveBasis(model; Ecut=20, kgrid=[2, 2, 2])
scfres = self_consistent_field(basis; tol=1e-6, ρ=guess_density(basis, magnetic_moments));
┌ Warning: Negative ρcore detected: -0.0006182370306135084
@ DFTK ~/work/DFTK.jl/DFTK.jl/src/terms/xc.jl:39
n     Energy            log10(ΔE)   log10(Δρ)   Magnet   |Magn|   Diag   Δtime
---   ---------------   ---------   ---------   ------   ------   ----   ------
  1   -361.3857461090                    0.07    1.335    3.441    6.9    5.46s
  2   -363.2374057658        0.27       -0.21    0.014    3.624    3.2    3.68s
  3   -363.3511551154       -0.94       -0.58    0.000    3.727    3.2    2.95s
  4   -363.3890413532       -1.42       -1.18    0.000    3.717    2.5    2.46s
  5   -363.3959775150       -2.16       -1.67    0.000    3.681    2.0    2.27s
  6   -363.3973153761       -2.87       -2.04    0.000    3.656    1.5    1.94s
  7   -363.3976106158       -3.53       -2.28    0.000    3.647    2.4    2.20s
  8   -363.3976904964       -4.10       -2.62    0.000    3.647    1.4    1.96s
  9   -363.3977069766       -4.78       -2.99    0.000    3.649    2.0    2.22s
 10   -363.3977065623   +   -6.38       -2.94   -0.000    3.649    2.0    2.06s
 11   -363.3977093289       -5.56       -3.21    0.000    3.648    2.0    2.10s
 12   -363.3977093339       -8.30       -3.31    0.000    3.648    1.8    1.98s
 13   -363.3977086824   +   -6.19       -3.13   -0.000    3.648    2.0    2.09s
 14   -363.3977087104       -7.55       -3.10   -0.000    3.648    1.0    1.70s
 15   -363.3977078604   +   -6.07       -2.77   -0.000    3.648    1.5    1.80s
 16   -363.3977097617       -5.72       -3.38   -0.000    3.649    2.2    2.13s
 17   -363.3977098377       -7.12       -3.28   -0.000    3.649    1.0    1.69s
 18   -363.3977099044       -7.18       -3.29   -0.000    3.649    1.4    1.75s
 19   -363.3977098235   +   -7.09       -3.29   -0.000    3.649    1.1    1.71s
 20   -363.3977095420   +   -6.55       -3.28    0.000    3.649    1.6    1.83s
 21   -363.3977095452       -8.50       -3.30    0.000    3.648    1.0    1.70s
 22   -363.3977095016   +   -7.36       -3.28    0.000    3.648    1.0    1.70s
 23   -363.3977095634       -7.21       -3.30    0.000    3.648    1.0    1.70s
 24   -363.3977097345       -6.77       -3.37    0.000    3.648    1.0    3.10s
 25   -363.3977099404       -6.69       -3.52   -0.000    3.648    1.0    1.67s
 26   -363.3977099887       -7.32       -3.59   -0.000    3.648    1.0    1.73s
 27   -363.3977100135       -7.61       -4.02   -0.000    3.648    1.2    1.73s
 28   -363.3977100083   +   -8.28       -4.09   -0.000    3.648    2.4    2.13s
 29   -363.3977100088       -9.23       -4.14    0.000    3.648    1.0    1.70s
 30   -363.3977100154       -8.19       -4.37    0.000    3.648    1.0    1.70s
 31   -363.3977100170       -8.78       -4.71    0.000    3.648    1.1    1.72s
 32   -363.3977100176       -9.22       -4.99    0.000    3.648    1.9    1.93s
 33   -363.3977100177       -9.96       -5.14    0.000    3.648    1.5    1.79s
 34   -363.3977100178       -9.97       -5.82    0.000    3.648    2.0    2.04s
 35   -363.3977100178      -11.19       -5.84    0.000    3.648    2.8    2.30s
 36   -363.3977100178      -11.88       -5.82    0.000    3.648    1.0    1.69s
 37   -363.3977100179      -11.46       -6.62    0.000    3.648    1.1    1.74s

Run band computation

bands_hub = compute_bands(scfres, MonkhorstPack(4, 4, 4))
lowest_unocc_band = findfirst(ε -> ε-bands_hub.εF > 0, bands_hub.eigenvalues[1])
band_gap = bands_hub.eigenvalues[1][lowest_unocc_band] - bands_hub.eigenvalues[1][lowest_unocc_band-1]
0.11667615723951719

With the electron localization introduced by the Hubbard term, the band gap has now opened, reflecting the experimental insulating behaviour of Nickel Oxide.

εF = bands_hub.εF
εrange = (εF - austrip(width), εF + austrip(width))
p = plot_dos(bands_hub; p, colors=[:blue, :blue], εrange)
plot_pdos(bands_hub; p, iatom=1, label="3D", colors=[:green, :purple], εrange)
Example block output