Comparison of DFT solvers

We compare four different approaches for solving the DFT minimisation problem, namely a density-based SCF, a potential-based SCF, direct minimisation and Newton.

First we setup our problem

using AtomsBuilder
using DFTK
using LinearAlgebra
using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.pbesol.v0_4_1.standard.upf")
model = model_DFT(bulk(:Si); functionals=PBEsol(), pseudopotentials)
basis = PlaneWaveBasis(model; Ecut=5, kgrid=[3, 3, 3])

# Convergence we desire in the density
tol = 1e-6
1.0e-6

Density-based self-consistent field

scfres_scf = self_consistent_field(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -8.397768532432                   -0.90    5.2   27.3ms
  2   -8.400233699668       -2.61       -1.73    1.0   28.6ms
  3   -8.400402689831       -3.77       -2.93    1.8   21.0ms
  4   -8.400427787689       -4.60       -2.94    3.2   25.7ms
  5   -8.400427965696       -6.75       -3.07    1.0   19.5ms
  6   -8.400428149657       -6.74       -4.61    1.0   19.4ms
  7   -8.400428155838       -8.21       -4.44    2.8   31.1ms
  8   -8.400428156226       -9.41       -4.91    1.0   19.5ms
  9   -8.400428156274      -10.31       -6.56    1.0   19.6ms

Potential-based SCF

scfres_scfv = DFTK.scf_potential_mixing(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   α      Diag   Δtime
---   ---------------   ---------   ---------   ----   ----   ------
  1   -8.397870696068                   -0.90           5.2   34.1ms
  2   -8.400383743001       -2.60       -1.79   0.80    2.0   19.0ms
  3   -8.400422322189       -4.41       -3.04   0.80    1.0   15.7ms
  4   -8.400428107597       -5.24       -3.41   0.80    2.2   19.8ms
  5   -8.400428152830       -7.34       -4.60   0.80    1.0   15.8ms
  6   -8.400428156243       -8.47       -5.66   0.80    2.5   20.3ms
  7   -8.400428156277      -10.48       -6.14   0.80    3.0   22.1ms

Direct minimization

scfres_dm = direct_minimization(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Δtime
---   ---------------   ---------   ---------   ------
  1   +1.365032036701                   -1.05   59.5ms
  2   -1.983377260075        0.52       -0.64   29.8ms
  3   -4.678214008827        0.43       -0.41   40.2ms
  4   -6.349259178802        0.22       -0.51   45.4ms
  5   -7.600674646341        0.10       -0.77   40.0ms
  6   -7.995413014429       -0.40       -1.42   29.2ms
  7   -8.174763646439       -0.75       -1.57   35.0ms
  8   -8.244307905716       -1.16       -1.77   29.3ms
  9   -8.295511626795       -1.29       -2.00   29.8ms
 10   -8.315677164875       -1.70       -2.13   29.5ms
 11   -8.350855230388       -1.45       -1.95   29.9ms
 12   -8.371231678507       -1.69       -2.17   35.7ms
 13   -8.389037704450       -1.75       -2.63   29.5ms
 14   -8.395719713110       -2.18       -2.63   29.7ms
 15   -8.398381357096       -2.57       -2.81   30.1ms
 16   -8.399355410478       -3.01       -3.30   35.9ms
 17   -8.400087986417       -3.14       -3.58   29.7ms
 18   -8.400247433165       -3.80       -3.29   29.5ms
 19   -8.400375527903       -3.89       -3.47   29.6ms
 20   -8.400403860803       -4.55       -4.00   35.4ms
 21   -8.400420066216       -4.79       -4.16   29.9ms
 22   -8.400424864249       -5.32       -4.45   29.9ms
 23   -8.400426991483       -5.67       -4.76   29.9ms
 24   -8.400427659799       -6.18       -4.52   29.7ms
 25   -8.400427967024       -6.51       -5.34   36.2ms
 26   -8.400428054337       -7.06       -5.09   29.8ms
 27   -8.400428126033       -7.14       -5.67   30.0ms
 28   -8.400428140764       -7.83       -5.40   29.7ms
 29   -8.400428152030       -7.95       -5.75   35.9ms
 30   -8.400428154235       -8.66       -5.69   30.2ms
 31   -8.400428155617       -8.86       -6.44   30.1ms

Newton algorithm

Start not too far from the solution to ensure convergence: We run first a very crude SCF to get close and then switch to Newton.

scfres_start = self_consistent_field(basis; tol=0.5);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -8.397802581192                   -0.90    5.2   27.6ms

Remove the virtual orbitals (which Newton cannot treat yet)

ψ = DFTK.select_occupied_orbitals(basis, scfres_start.ψ, scfres_start.occupation).ψ
scfres_newton = newton(basis, ψ; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Δtime
---   ---------------   ---------   ---------   ------
  1   -8.400427978560                   -1.79    582ms
  2   -8.400428156277       -6.75       -4.03    368ms
  3   -8.400428156277      -14.27       -7.81    131ms

Comparison of results

println("|ρ_newton - ρ_scf|  = ", norm(scfres_newton.ρ - scfres_scf.ρ))
println("|ρ_newton - ρ_scfv| = ", norm(scfres_newton.ρ - scfres_scfv.ρ))
println("|ρ_newton - ρ_dm|   = ", norm(scfres_newton.ρ - scfres_dm.ρ))
|ρ_newton - ρ_scf|  = 3.8256921367762754e-7
|ρ_newton - ρ_scfv| = 3.005435864491837e-7
|ρ_newton - ρ_dm|   = 2.2031824056874472e-6