Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73317929003                   -0.88   12.0    349ms
  2   -36.60741085754   +   -0.90       -1.41    1.0   83.9ms
  3   +41.69054442945   +    1.89       -0.11    8.0    233ms
  4   -36.20199275035        1.89       -1.06    8.0    230ms
  5   -33.15660984138   +    0.48       -0.79    4.0    141ms
  6   -36.64580930379        0.54       -1.48    6.0    181ms
  7   -36.72943166048       -1.08       -1.74    2.0    101ms
  8   -36.73436041705       -2.31       -2.01    2.0    103ms
  9   -36.73319207138   +   -2.93       -1.91    2.0    122ms
 10   -36.73939336882       -2.21       -2.13    2.0    105ms
 11   -36.74122960579       -2.74       -2.23    1.0   91.3ms
 12   -36.74224747154       -2.99       -2.61    1.0   88.7ms
 13   -36.74242166124       -3.76       -2.72    2.0    106ms
 14   -36.74245261532       -4.51       -2.86    2.0    101ms
 15   -36.73614363878   +   -2.20       -2.16    3.0    140ms
 16   -36.74240776785       -2.20       -2.97    4.0    141ms
 17   -36.73381973768   +   -2.07       -2.09    4.0    165ms
 18   -36.74248168544       -2.06       -3.23    3.0    139ms
 19   -36.74248975109       -5.09       -3.25    2.0    124ms
 20   -36.74251013467       -4.69       -3.54    2.0    103ms
 21   -36.74250642804   +   -5.43       -3.52    3.0    123ms
 22   -36.74251467633       -5.08       -4.14    2.0    185ms
 23   -36.74251458914   +   -7.06       -4.36    3.0    780ms
 24   -36.74251471920       -6.89       -4.54    1.0   91.9ms
 25   -36.74251474558       -7.58       -4.69    2.0    107ms
 26   -36.74251476362       -7.74       -4.87    2.0    106ms
 27   -36.74251448719   +   -6.56       -4.30    3.0    137ms
 28   -36.74251476060       -6.56       -4.96    3.0    129ms
 29   -36.74251471389   +   -7.33       -4.66    3.0    133ms
 30   -36.74251476416       -7.30       -4.98    3.0    129ms
 31   -36.74251477256       -8.08       -5.57    2.0   99.4ms
 32   -36.74251477230   +   -9.58       -5.59    3.0    141ms
 33   -36.74251477236      -10.26       -5.53    2.0    114ms
 34   -36.74251477301       -9.18       -6.20    2.0   99.1ms
 35   -36.74251477283   +   -9.74       -5.85    3.0    143ms
 36   -36.74251477302       -9.72       -6.42    3.0    113ms
 37   -36.74251477303      -11.10       -6.69    3.0    137ms
 38   -36.74251477303      -11.66       -6.70    3.0    124ms
 39   -36.74251477304      -12.18       -6.75    2.0    110ms
 40   -36.74251477304      -11.73       -7.22    2.0    104ms
 41   -36.74251477303   +  -11.54       -6.81    3.0    143ms
 42   -36.74251477304      -11.55       -7.37    3.0    125ms
 43   -36.74251477304      -12.89       -7.69    2.0    104ms
 44   -36.74251477304   +    -Inf       -7.79    2.0    119ms
 45   -36.74251477304   +  -13.15       -7.50    3.0    124ms
 46   -36.74251477304      -13.07       -7.95    3.0    134ms
 47   -36.74251477304   +    -Inf       -8.08    2.0    109ms
 48   -36.74251477304      -14.15       -8.42    1.0   94.4ms
 49   -36.74251477304   +  -14.15       -7.98    3.0    145ms
 50   -36.74251477304      -13.85       -8.40    3.0    128ms
 51   -36.74251477304   +  -13.85       -9.14    2.0    109ms
 52   -36.74251477304   +    -Inf       -9.27    3.0    142ms
 53   -36.74251477304      -14.15       -9.38    1.0   94.6ms
 54   -36.74251477304   +  -14.15       -9.65    1.0   94.5ms
 55   -36.74251477304      -13.85       -9.30    3.0    131ms
 56   -36.74251477304   +  -14.15       -9.31    3.0    135ms
 57   -36.74251477304   +    -Inf       -9.59    3.0    126ms
 58   -36.74251477304   +  -14.15      -10.02    2.0    120ms
 59   -36.74251477304      -13.85      -10.43    2.0    128ms
 60   -36.74251477304   +    -Inf      -10.05    3.0    132ms
 61   -36.74251477304   +  -13.85      -10.52    3.0    129ms
 62   -36.74251477304   +    -Inf      -10.51    3.0    135ms
 63   -36.74251477304      -13.85      -11.13    1.0   95.1ms
 64   -36.74251477304   +  -14.15      -11.17    3.0    140ms
 65   -36.74251477304      -14.15      -11.25    2.0    111ms
 66   -36.74251477304   +  -14.15      -11.72    1.0   94.7ms
 67   -36.74251477304   +  -14.15      -11.94    3.0    138ms
 68   -36.74251477304      -13.85      -11.77    2.0    128ms
 69   -36.74251477304   +  -13.85      -11.70    3.0    130ms
 70   -36.74251477304      -13.85      -12.00    2.0    110ms
 71   -36.74251477304   +    -Inf      -12.06    2.0    120ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73083312271                   -0.88   14.0    343ms
  2   -36.73873861004       -2.10       -1.36    1.0   91.2ms
  3   -36.73965477396       -3.04       -1.76    4.0    136ms
  4   -36.74202167443       -2.63       -2.01    1.0   88.4ms
  5   -36.74226947427       -3.61       -2.38    5.0    113ms
  6   -36.74243979840       -3.77       -2.44    3.0    116ms
  7   -36.74250511986       -4.18       -2.99    1.0   93.0ms
  8   -36.74251316516       -5.09       -3.39    4.0    129ms
  9   -36.74251268520   +   -6.32       -3.31    2.0    127ms
 10   -36.74251438079       -5.77       -3.69    1.0   94.7ms
 11   -36.74251457669       -6.71       -4.19    1.0   95.1ms
 12   -36.74251474138       -6.78       -4.63    3.0    115ms
 13   -36.74251476988       -7.55       -4.78    3.0    134ms
 14   -36.74251477205       -8.66       -5.26    1.0   96.4ms
 15   -36.74251477269       -9.20       -5.26    3.0    135ms
 16   -36.74251477286       -9.75       -5.48    1.0   96.7ms
 17   -36.74251477303       -9.79       -6.08    2.0    101ms
 18   -36.74251477302   +  -11.22       -6.05    3.0    140ms
 19   -36.74251477303      -10.94       -6.30    2.0    104ms
 20   -36.74251477304      -11.32       -6.60    2.0    103ms
 21   -36.74251477304   +  -12.10       -6.58    3.0    131ms
 22   -36.74251477304      -11.81       -7.01    1.0   92.6ms
 23   -36.74251477304      -12.92       -7.49    3.0    121ms
 24   -36.74251477304   +    -Inf       -7.89    3.0    137ms
 25   -36.74251477304      -13.67       -7.96    2.0    101ms
 26   -36.74251477304   +  -14.15       -8.58    2.0    101ms
 27   -36.74251477304   +  -14.15       -8.56    4.0    144ms
 28   -36.74251477304      -13.85       -8.77    1.0   94.1ms
 29   -36.74251477304   +    -Inf       -9.24    3.0    108ms
 30   -36.74251477304   +  -13.85       -9.23    3.0    136ms
 31   -36.74251477304      -13.85       -9.46    1.0   95.5ms
 32   -36.74251477304   +    -Inf      -10.01    2.0    107ms
 33   -36.74251477304   +    -Inf       -9.85    3.0    135ms
 34   -36.74251477304   +    -Inf       -9.92    1.0   95.4ms
 35   -36.74251477304   +    -Inf      -10.65    2.0    110ms
 36   -36.74251477304   +  -14.15      -10.94    3.0    134ms
 37   -36.74251477304      -14.15      -11.06    2.0    100ms
 38   -36.74251477304   +    -Inf      -11.48    1.0   95.6ms
 39   -36.74251477304   +    -Inf      -11.51    3.0    133ms
 40   -36.74251477304      -14.15      -12.00    1.0   95.4ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV)
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.0244888105471

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244210935448635

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.7235883245209696

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).