Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73593375254                   -0.88   11.0    339ms
  2   -36.71952832145   +   -1.79       -1.62    1.0   89.4ms
  3   -8.177546947962   +    1.46       -0.34    6.0    184ms
  4   -36.67605664700        1.45       -1.27    5.0    174ms
  5   -36.62876808072   +   -1.33       -1.51    2.0    116ms
  6   -36.39003050349   +   -0.62       -1.29    4.0    142ms
  7   -36.73737239748       -0.46       -1.91    3.0    126ms
  8   -36.74202583102       -2.33       -2.31    2.0    104ms
  9   -36.74114632955   +   -3.06       -2.21    2.0    124ms
 10   -36.74200281620       -3.07       -2.41    2.0    113ms
 11   -36.74239593466       -3.41       -2.71    2.0    111ms
 12   -36.74246222576       -4.18       -3.00    2.0    105ms
 13   -36.74246933480       -5.15       -3.39    2.0    126ms
 14   -36.74247416896       -5.32       -3.33    2.0    104ms
 15   -36.74192392591   +   -3.26       -2.70    4.0    148ms
 16   -36.74247574061       -3.26       -3.67    3.0    133ms
 17   -36.74247976784       -5.39       -3.69    2.0    108ms
 18   -36.74230625516   +   -3.76       -2.95    3.0    138ms
 19   -36.74248057532       -3.76       -4.28    4.0    147ms
 20   -36.74248063526       -7.22       -4.50    3.0    141ms
 21   -36.74248057386   +   -7.21       -4.45    2.0    108ms
 22   -36.74248062913       -7.26       -4.69    1.0   91.6ms
 23   -36.74248066174       -7.49       -4.72    2.0    109ms
 24   -36.74248066864       -8.16       -5.21    1.0   94.2ms
 25   -36.74248067193       -8.48       -5.41    3.0    132ms
 26   -36.74248067226       -9.49       -5.61    1.0   93.6ms
 27   -36.74248066468   +   -8.12       -5.10    3.0    210ms
 28   -36.74248067170       -8.15       -5.54    3.0    722ms
 29   -36.74248067267       -9.01       -6.10    2.0    106ms
 30   -36.74248067259   +  -10.09       -5.95    3.0    131ms
 31   -36.74248067267      -10.09       -6.36    2.0    107ms
 32   -36.74248067268      -11.03       -6.42    2.0    122ms
 33   -36.74248067268      -11.47       -6.99    1.0   89.7ms
 34   -36.74248067268   +  -12.63       -7.09    3.0    135ms
 35   -36.74248067268      -12.42       -7.14    2.0    105ms
 36   -36.74248067268      -13.00       -7.62    1.0   90.4ms
 37   -36.74248067268      -14.15       -7.61    2.0    122ms
 38   -36.74248067268   +  -12.49       -7.28    4.0    137ms
 39   -36.74248067268      -12.50       -7.79    3.0    129ms
 40   -36.74248067268      -13.85       -7.87    2.0    105ms
 41   -36.74248067268   +  -13.55       -7.67    3.0    127ms
 42   -36.74248067268      -13.55       -7.96    3.0    122ms
 43   -36.74248067268   +    -Inf       -8.12    1.0   94.2ms
 44   -36.74248067268      -13.85       -8.65    2.0    106ms
 45   -36.74248067268   +    -Inf       -8.92    3.0    138ms
 46   -36.74248067268   +  -14.15       -8.94    2.0    104ms
 47   -36.74248067268      -14.15       -9.13    2.0    110ms
 48   -36.74248067268   +    -Inf       -9.15    2.0    106ms
 49   -36.74248067268      -14.15       -8.89    3.0    124ms
 50   -36.74248067268   +  -14.15       -8.97    2.0    116ms
 51   -36.74248067268   +  -13.85       -9.32    3.0    126ms
 52   -36.74248067268   +    -Inf       -9.43    3.0    127ms
 53   -36.74248067268      -13.85       -9.77    1.0   90.2ms
 54   -36.74248067268   +  -14.15       -9.81    3.0    137ms
 55   -36.74248067268      -14.15      -10.07    2.0    110ms
 56   -36.74248067268   +    -Inf      -10.39    1.0   93.9ms
 57   -36.74248067268   +    -Inf      -10.63    2.0    124ms
 58   -36.74248067268   +    -Inf      -10.90    1.0   94.8ms
 59   -36.74248067268   +  -13.85      -10.70    3.0    134ms
 60   -36.74248067268   +    -Inf      -10.70    3.0    134ms
 61   -36.74248067268      -14.15      -11.27    2.0    117ms
 62   -36.74248067268      -14.15      -11.22    2.0    123ms
 63   -36.74248067268   +    -Inf      -10.71    4.0    148ms
 64   -36.74248067268   +    -Inf      -11.22    3.0    134ms
 65   -36.74248067268   +    -Inf      -11.41    2.0    108ms
 66   -36.74248067268   +    -Inf      -10.92    3.0    130ms
 67   -36.74248067268   +  -13.85      -11.67    3.0    131ms
 68   -36.74248067268      -13.85      -11.37    3.0    135ms
 69   -36.74248067268   +    -Inf      -12.22    2.0    109ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.72884006558                   -0.88   12.0    336ms
  2   -36.73795394623       -2.04       -1.36    1.0   89.0ms
  3   -36.73916241928       -2.92       -1.69    4.0    137ms
  4   -36.74197011389       -2.55       -2.02    2.0   97.5ms
  5   -36.74222833672       -3.59       -2.55    2.0   94.5ms
  6   -36.74237644352       -3.83       -2.41    6.0    146ms
  7   -36.74244050399       -4.19       -2.92    1.0   93.9ms
  8   -36.74247861754       -4.42       -3.32    2.0    102ms
  9   -36.74247869772       -7.10       -3.37    3.0    116ms
 10   -36.74248034539       -5.78       -3.72    4.0    106ms
 11   -36.74248059049       -6.61       -3.90    1.0   96.2ms
 12   -36.74248064315       -7.28       -4.46    2.0    106ms
 13   -36.74248066880       -7.59       -4.57    3.0    141ms
 14   -36.74248067076       -8.71       -4.69    1.0   97.2ms
 15   -36.74248067207       -8.88       -5.12    2.0    109ms
 16   -36.74248067249       -9.38       -5.33    2.0    102ms
 17   -36.74248067261       -9.94       -5.43    1.0   97.0ms
 18   -36.74248067267      -10.22       -6.00    4.0    113ms
 19   -36.74248067268      -11.01       -6.18    3.0    137ms
 20   -36.74248067268      -12.01       -6.45    1.0   95.1ms
 21   -36.74248067268      -12.50       -6.48    3.0    127ms
 22   -36.74248067268      -12.47       -6.66    1.0   96.2ms
 23   -36.74248067268      -12.57       -7.36    2.0    111ms
 24   -36.74248067268   +  -13.85       -7.21    4.0    151ms
 25   -36.74248067268      -13.67       -7.78    2.0    120ms
 26   -36.74248067268   +    -Inf       -8.04    2.0    118ms
 27   -36.74248067268      -13.85       -8.52    1.0   96.4ms
 28   -36.74248067268   +  -13.67       -8.93    3.0    146ms
 29   -36.74248067268      -13.85       -9.41    3.0    117ms
 30   -36.74248067268   +    -Inf       -9.28    4.0    140ms
 31   -36.74248067268   +    -Inf       -9.54    1.0   92.7ms
 32   -36.74248067268   +  -13.85      -10.18    2.0    112ms
 33   -36.74248067268      -13.85      -10.40    4.0    151ms
 34   -36.74248067268   +  -13.85      -10.67    1.0   97.2ms
 35   -36.74248067268      -14.15      -10.84    3.0    127ms
 36   -36.74248067268   +    -Inf      -11.00    1.0   96.4ms
 37   -36.74248067268      -14.15      -11.21    1.0   94.0ms
 38   -36.74248067268   +    -Inf      -11.46    5.0    116ms
 39   -36.74248067268   +  -13.85      -12.11    2.0    122ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448898022948

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244211113686426

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723669726590018

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).