Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73221841801                   -0.88   11.0    432ms
  2   -36.58873535212   +   -0.84       -1.37    1.0   91.9ms
┌ Warning: Eigensolver not converged
  n_iter =
   1-element Vector{Int64}:
    22
@ DFTK ~/work/DFTK.jl/DFTK.jl/src/scf/self_consistent_field.jl:76
  3   +50.69650308874   +    1.94       -0.09   22.0    354ms
  4   -36.56037747978        1.94       -1.10    9.0    349ms
  5   -33.65826785918   +    0.46       -0.81    4.0    229ms
  6   -36.42291139455        0.44       -1.28    4.0    180ms
  7   -36.71655214650       -0.53       -1.65    3.0    148ms
  8   -36.73019809285       -1.86       -1.90    2.0    239ms
  9   -36.72547908948   +   -2.33       -1.77    2.0    159ms
 10   -36.74114415150       -1.81       -2.13    2.0    734ms
 11   -36.74156660454       -3.37       -2.31    2.0    125ms
 12   -36.74232326261       -3.12       -2.51    1.0    102ms
 13   -36.74239550598       -4.14       -2.65    1.0    104ms
 14   -36.74244446412       -4.31       -2.72    1.0    107ms
 15   -36.73815771764   +   -2.37       -2.24    3.0    192ms
 16   -36.74224292843       -2.39       -2.77    3.0    153ms
 17   -36.72241603436   +   -1.70       -1.89    4.0    193ms
 18   -36.74248212892       -1.70       -3.24    4.0    188ms
 19   -36.74213757453   +   -3.46       -2.72    3.0    168ms
 20   -36.74230451996       -3.78       -2.80    2.0    134ms
 21   -36.74251101340       -3.69       -3.57    3.0    203ms
 22   -36.74251403239       -5.52       -4.01    2.0    126ms
 23   -36.74251465944       -6.20       -4.13    2.0    141ms
 24   -36.74251473337       -7.13       -4.40    2.0    129ms
 25   -36.74251462657   +   -6.97       -4.22    2.0    147ms
 26   -36.74251477091       -6.84       -5.01    2.0    128ms
 27   -36.74251476238   +   -8.07       -5.01    3.0    157ms
 28   -36.74251475122   +   -7.95       -4.87    3.0    149ms
 29   -36.74251477199       -7.68       -5.45    2.0    161ms
 30   -36.74251477092   +   -8.97       -5.37    3.0    153ms
 31   -36.74251476605   +   -8.31       -5.10    3.0    157ms
 32   -36.74251477177       -8.24       -5.46    3.0    157ms
 33   -36.74251477303       -8.90       -6.48    2.0    127ms
 34   -36.74251477303      -11.60       -6.53    3.0    188ms
 35   -36.74251477303   +  -11.43       -6.39    2.0    121ms
 36   -36.74251477304      -11.28       -6.78    2.0    152ms
 37   -36.74251477304      -13.55       -6.81    2.0    127ms
 38   -36.74251477304      -11.77       -7.15    2.0    110ms
 39   -36.74251477304      -12.39       -7.73    2.0    126ms
 40   -36.74251477304   +  -12.64       -7.28    3.0    166ms
 41   -36.74251477304      -12.72       -7.57    3.0    161ms
 42   -36.74251477304   +  -12.42       -7.23    3.0    153ms
 43   -36.74251477304      -12.51       -7.51    3.0    189ms
 44   -36.74251477304      -13.03       -7.77    3.0    157ms
 45   -36.74251477304      -13.67       -8.49    1.0    106ms
 46   -36.74251477304   +  -14.15       -8.48    2.0    141ms
 47   -36.74251477304   +    -Inf       -8.16    3.0    156ms
 48   -36.74251477304   +  -13.85       -8.94    2.0    133ms
 49   -36.74251477304   +    -Inf       -8.57    2.0    145ms
 50   -36.74251477304   +    -Inf       -8.97    3.0    195ms
 51   -36.74251477304      -13.85       -8.91    2.0    128ms
 52   -36.74251477304   +    -Inf       -9.53    1.0    105ms
 53   -36.74251477304   +  -14.15       -9.81    3.0    198ms
 54   -36.74251477304      -14.15      -10.26    1.0    101ms
 55   -36.74251477304   +  -14.15       -9.47    4.0    189ms
 56   -36.74251477304   +  -14.15      -10.29    3.0    168ms
 57   -36.74251477304      -14.15      -10.46    2.0    156ms
 58   -36.74251477304      -14.15      -10.10    2.0    135ms
 59   -36.74251477304      -14.15      -10.43    2.0    160ms
 60   -36.74251477304   +  -13.85      -10.34    3.0    158ms
 61   -36.74251477304      -14.15      -11.04    2.0    121ms
 62   -36.74251477304   +    -Inf      -10.68    3.0    156ms
 63   -36.74251477304   +    -Inf      -10.90    2.0    140ms
 64   -36.74251477304   +    -Inf      -11.02    3.0    206ms
 65   -36.74251477304   +    -Inf      -11.52    1.0    101ms
 66   -36.74251477304   +    -Inf      -11.61    2.0    146ms
 67   -36.74251477304   +  -13.85      -11.14    3.0    158ms
 68   -36.74251477304      -14.15      -11.58    3.0    169ms
 69   -36.74251477304      -14.15      -11.62    2.0    133ms
 70   -36.74251477304   +    -Inf      -11.85    1.0    105ms
 71   -36.74251477304   +    -Inf      -12.07    2.0    127ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73462738510                   -0.88   11.0    398ms
  2   -36.74034138949       -2.24       -1.36    1.0   98.8ms
  3   -36.74145732551       -2.95       -2.10    3.0    115ms
  4   -36.74217291917       -3.15       -2.07    4.0    150ms
  5   -36.74242204792       -3.60       -2.58    1.0   99.2ms
  6   -36.74247175529       -4.30       -2.61    5.0    162ms
  7   -36.74248760447       -4.80       -2.94    1.0    100ms
  8   -36.74251224660       -4.61       -3.42    2.0    107ms
  9   -36.74251388414       -5.79       -3.52    4.0    149ms
 10   -36.74251466267       -6.11       -3.77    1.0    102ms
 11   -36.74251463363   +   -7.54       -3.85    2.0    123ms
 12   -36.74251476392       -6.89       -4.57    1.0    104ms
 13   -36.74251477232       -8.08       -4.81    3.0    162ms
 14   -36.74251476979   +   -8.60       -4.74    1.0    103ms
 15   -36.74251477271       -8.53       -5.54    1.0    142ms
 16   -36.74251477300       -9.54       -5.69    4.0    155ms
 17   -36.74251477303      -10.57       -5.92    1.0    100ms
 18   -36.74251477304      -11.07       -6.37    2.0    118ms
 19   -36.74251477304      -11.70       -6.80    6.0    140ms
 20   -36.74251477304      -12.62       -7.09    2.0    141ms
 21   -36.74251477304   +  -13.85       -7.27    2.0    106ms
 22   -36.74251477304   +  -13.85       -7.37    2.0    110ms
 23   -36.74251477304      -13.19       -7.74    2.0    159ms
 24   -36.74251477304   +  -14.15       -8.13    2.0    115ms
 25   -36.74251477304   +  -13.67       -8.55    3.0    131ms
 26   -36.74251477304      -13.85       -8.74    3.0    149ms
 27   -36.74251477304   +  -14.15       -9.17    2.0    123ms
 28   -36.74251477304   +  -14.15       -9.47    3.0    148ms
 29   -36.74251477304      -14.15       -9.96    2.0    106ms
 30   -36.74251477304      -14.15      -10.18    3.0    167ms
 31   -36.74251477304   +  -13.85      -10.67    3.0    167ms
 32   -36.74251477304      -13.85      -10.89    3.0    168ms
 33   -36.74251477304   +  -14.15      -11.59    2.0    106ms
 34   -36.74251477304   +    -Inf      -11.52    4.0    161ms
 35   -36.74251477304   +  -14.15      -11.84    1.0    103ms
 36   -36.74251477304      -14.15      -12.08    3.0    123ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV)
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448824375489

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244210340078666

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723581069536744

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).