Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73314578126                   -0.88   11.0    350ms
  2   -36.70263177648   +   -1.52       -1.56    1.0   90.7ms
  3   +3.439197840320   +    1.60       -0.27    7.0    202ms
  4   -36.56809312311        1.60       -1.15    6.0    205ms
  5   -36.70088969328       -0.88       -1.62    2.0    118ms
  6   -35.94243030072   +   -0.12       -1.12    3.0    125ms
  7   -36.71243585342       -0.11       -1.72    3.0    142ms
  8   -36.74132663903       -1.54       -2.27    2.0    109ms
  9   -36.73742791590   +   -2.41       -1.98    3.0    138ms
 10   -36.74002458136       -2.59       -2.17    2.0    120ms
 11   -36.74174554218       -2.76       -2.38    2.0    137ms
 12   -36.74246477960       -3.14       -2.87    1.0   92.0ms
 13   -36.74250605570       -4.38       -3.08    2.0    129ms
 14   -36.74248029362   +   -4.59       -2.85    3.0    126ms
 15   -36.74235189801   +   -3.89       -2.94    2.0    117ms
 16   -36.74233832053   +   -4.87       -2.82    3.0    135ms
 17   -36.74222148505   +   -3.93       -2.77    2.0    122ms
 18   -36.74209222143   +   -3.89       -2.75    3.0    131ms
 19   -36.74250669275       -3.38       -3.32    2.0    120ms
 20   -36.74251382468       -5.15       -3.99    2.0    114ms
 21   -36.74251454770       -6.14       -4.21    3.0    142ms
 22   -36.74251448955   +   -7.24       -4.18    2.0    113ms
 23   -36.74251429931   +   -6.72       -4.03    2.0    125ms
 24   -36.74251474788       -6.35       -4.54    2.0    111ms
 25   -36.74251475203       -8.38       -4.53    2.0    117ms
 26   -36.74251475756       -8.26       -4.77    2.0    103ms
 27   -36.74251476711       -8.02       -4.94    1.0   91.4ms
 28   -36.74251475941   +   -8.11       -4.89    2.0    129ms
 29   -36.74251476079       -8.86       -4.91    2.0    125ms
 30   -36.74251471057   +   -7.30       -4.67    3.0    130ms
 31   -36.74251477289       -7.21       -5.88    3.0    136ms
 32   -36.74251477205   +   -9.08       -5.55    4.0    161ms
 33   -36.74251477286       -9.09       -5.89    3.0    130ms
 34   -36.74251477303       -9.78       -6.37    2.0    110ms
 35   -36.74251477303      -11.80       -6.52    2.0    128ms
 36   -36.74251477303   +  -11.70       -6.36    2.0    107ms
 37   -36.74251477304      -11.08       -6.96    2.0    105ms
 38   -36.74251477304      -12.89       -7.32    3.0    109ms
 39   -36.74251477304      -13.67       -7.37    3.0    144ms
 40   -36.74251477304   +  -13.85       -7.36    1.0   95.7ms
 41   -36.74251477304      -13.19       -7.50    2.0    116ms
 42   -36.74251477304   +  -13.15       -7.42    2.0    117ms
 43   -36.74251477304   +  -13.19       -7.42    3.0    129ms
 44   -36.74251477304      -13.07       -7.51    3.0    123ms
 45   -36.74251477304      -13.03       -8.11    2.0    105ms
 46   -36.74251477304   +    -Inf       -8.37    3.0    155ms
 47   -36.74251477304   +  -13.07       -7.57    4.0    147ms
 48   -36.74251477304      -13.11       -8.54    4.0    153ms
 49   -36.74251477304      -14.15       -8.93    2.0    104ms
 50   -36.74251477304   +    -Inf       -8.74    3.0    140ms
 51   -36.74251477304   +  -14.15       -9.35    2.0    111ms
 52   -36.74251477304      -14.15       -9.25    3.0    130ms
 53   -36.74251477304   +  -14.15       -9.32    2.0    116ms
 54   -36.74251477304   +    -Inf       -9.50    2.0    106ms
 55   -36.74251477304      -14.15       -9.37    2.0    110ms
 56   -36.74251477304   +    -Inf       -9.86    2.0    101ms
 57   -36.74251477304   +    -Inf      -10.06    2.0    129ms
 58   -36.74251477304   +    -Inf      -10.41    2.0    110ms
 59   -36.74251477304   +    -Inf      -10.59    2.0    124ms
 60   -36.74251477304   +    -Inf      -10.44    3.0    134ms
 61   -36.74251477304   +    -Inf      -11.11    2.0    178ms
 62   -36.74251477304   +  -14.15      -11.15    2.0    125ms
 63   -36.74251477304      -14.15      -11.30    2.0    665ms
 64   -36.74251477304   +  -13.85      -11.78    2.0    107ms
 65   -36.74251477304   +    -Inf      -11.83    3.0    136ms
 66   -36.74251477304      -13.85      -11.92    2.0    107ms
 67   -36.74251477304   +  -13.85      -12.12    3.0    145ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73223540392                   -0.88   12.0    339ms
  2   -36.73972355993       -2.13       -1.36    1.0   92.0ms
  3   -36.74032644836       -3.22       -1.67    4.0    156ms
  4   -36.74228920105       -2.71       -2.21    2.0   94.5ms
  5   -36.74240459562       -3.94       -2.45    6.0    121ms
  6   -36.74244086323       -4.44       -2.44    2.0    102ms
  7   -36.74250438069       -4.20       -3.19    1.0   91.8ms
  8   -36.74251200847       -5.12       -3.17    3.0    136ms
  9   -36.74251367524       -5.78       -3.53    1.0   91.2ms
 10   -36.74251446645       -6.10       -4.04    2.0   97.5ms
 11   -36.74251474108       -6.56       -4.33    3.0    131ms
 12   -36.74251476830       -7.57       -4.50    2.0    103ms
 13   -36.74251476698   +   -8.88       -4.83    2.0    100ms
 14   -36.74251477278       -8.24       -5.25    5.0    125ms
 15   -36.74251477292       -9.86       -5.43    2.0    126ms
 16   -36.74251477297      -10.36       -5.50    1.0    117ms
 17   -36.74251477294   +  -10.56       -5.58    2.0    118ms
 18   -36.74251477303      -10.02       -6.19    1.0   97.9ms
 19   -36.74251477304      -11.38       -6.56    3.0    139ms
 20   -36.74251477304   +  -12.22       -6.77    2.0    163ms
 21   -36.74251477304      -12.05       -7.39    2.0    105ms
 22   -36.74251477304   +  -12.94       -7.31    3.0    148ms
 23   -36.74251477304      -13.03       -7.48    2.0    113ms
 24   -36.74251477304   +    -Inf       -7.63    1.0   97.7ms
 25   -36.74251477304      -13.85       -8.40    2.0    129ms
 26   -36.74251477304   +    -Inf       -8.65    3.0    147ms
 27   -36.74251477304      -14.15       -8.91    2.0    103ms
 28   -36.74251477304   +  -14.15       -8.98    3.0    123ms
 29   -36.74251477304   +  -13.85       -9.31    1.0   93.4ms
 30   -36.74251477304      -14.15       -9.64    4.0    114ms
 31   -36.74251477304   +    -Inf      -10.05    2.0    122ms
 32   -36.74251477304      -14.15      -10.35    3.0    139ms
 33   -36.74251477304   +  -13.85      -10.53    2.0    104ms
 34   -36.74251477304      -13.85      -11.16    2.0    127ms
 35   -36.74251477304   +  -13.85      -11.16    4.0    141ms
 36   -36.74251477304      -13.85      -11.39    1.0   97.6ms
 37   -36.74251477304   +  -13.85      -11.84    2.0    112ms
 38   -36.74251477304      -13.85      -11.77    3.0    137ms
 39   -36.74251477304   +    -Inf      -12.15    1.0   94.3ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV)
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.024487775913514

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.24420984864865

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.7236239152456525

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).