Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73133031618                   -0.88   13.0    335ms
  2   -36.42009523858   +   -0.51       -1.24    1.0   84.3ms
  3   +118.2191351500   +    2.19        0.04   20.0    331ms
  4   -34.74806639702        2.18       -0.79   11.0    286ms
  5   -28.63622804896   +    0.79       -0.59    4.0    163ms
  6   -33.22547826755        0.66       -0.75    5.0    157ms
  7   -36.67017599734        0.54       -1.49    4.0    144ms
  8   -36.71859963174       -1.31       -1.61    2.0    114ms
  9   -36.73921804473       -1.69       -1.88    2.0    107ms
 10   -36.74069048726       -2.83       -2.07    1.0   91.8ms
 11   -36.73471810230   +   -2.22       -1.99    2.0    116ms
 12   -36.74090047777       -2.21       -2.32    1.0   89.7ms
 13   -36.74192953116       -2.99       -2.49    2.0    101ms
 14   -36.74218846349       -3.59       -2.65    2.0    102ms
 15   -36.73957423706   +   -2.58       -2.27    3.0    124ms
 16   -36.73216941270   +   -2.13       -2.03    3.0    138ms
 17   -36.73956914099       -2.13       -2.31    3.0    131ms
 18   -36.73837231744   +   -2.92       -2.25    3.0    272ms
 19   -36.74222260588       -2.41       -2.80    3.0    723ms
 20   -36.74247358960       -3.60       -3.40    2.0    105ms
 21   -36.74246821350   +   -5.27       -3.22    2.0    124ms
 22   -36.74246667769   +   -5.81       -3.44    2.0    117ms
 23   -36.74247988153       -4.88       -3.94    2.0    110ms
 24   -36.74247877965   +   -5.96       -3.75    3.0    156ms
 25   -36.74248015523       -5.86       -4.11    2.0    105ms
 26   -36.74248028094       -6.90       -4.20    1.0   90.1ms
 27   -36.74248057966       -6.52       -4.49    1.0   90.5ms
 28   -36.74248013804   +   -6.35       -4.16    3.0    141ms
 29   -36.74248062439       -6.31       -4.71    3.0    123ms
 30   -36.74248066718       -7.37       -5.05    2.0    101ms
 31   -36.74248065509   +   -7.92       -4.90    2.0    122ms
 32   -36.74248067161       -7.78       -5.43    2.0    107ms
 33   -36.74248067259       -9.01       -5.83    1.0   90.2ms
 34   -36.74248067253   +  -10.22       -5.83    3.0    134ms
 35   -36.74248067264       -9.96       -6.13    2.0    109ms
 36   -36.74248067268      -10.34       -6.60    2.0    105ms
 37   -36.74248067266   +  -10.76       -6.28    3.0    136ms
 38   -36.74248067268      -10.75       -6.59    3.0    123ms
 39   -36.74248067263   +  -10.33       -6.20    3.0    132ms
 40   -36.74248067268      -10.33       -6.86    3.0    131ms
 41   -36.74248067268      -12.66       -7.02    2.0    108ms
 42   -36.74248067267   +  -11.07       -6.57    3.0    129ms
 43   -36.74248067268      -11.28       -6.77    3.0    142ms
 44   -36.74248067268      -11.43       -7.40    3.0    116ms
 45   -36.74248067268   +    -Inf       -7.48    2.0    125ms
 46   -36.74248067268   +  -12.79       -7.23    2.0    117ms
 47   -36.74248067268      -12.66       -7.92    2.0    104ms
 48   -36.74248067268   +  -13.55       -7.67    3.0    135ms
 49   -36.74248067268      -13.67       -7.96    2.0    108ms
 50   -36.74248067268   +  -14.15       -8.15    2.0    107ms
 51   -36.74248067268      -13.85       -8.03    3.0    127ms
 52   -36.74248067268   +    -Inf       -8.55    2.0    105ms
 53   -36.74248067268   +  -13.85       -8.88    2.0    126ms
 54   -36.74248067268      -13.85       -8.92    2.0    109ms
 55   -36.74248067268   +  -14.15       -8.36    3.0    132ms
 56   -36.74248067268   +    -Inf       -9.11    3.0    132ms
 57   -36.74248067268      -13.85       -9.44    2.0   98.8ms
 58   -36.74248067268   +  -14.15       -9.50    2.0    126ms
 59   -36.74248067268   +  -14.15       -9.71    2.0    106ms
 60   -36.74248067268      -13.85       -9.96    1.0   93.2ms
 61   -36.74248067268   +  -13.85       -9.78    2.0    115ms
 62   -36.74248067268      -14.15      -10.21    3.0    127ms
 63   -36.74248067268   +    -Inf      -10.15    2.0    125ms
 64   -36.74248067268   +    -Inf      -10.11    2.0    108ms
 65   -36.74248067268   +    -Inf      -10.92    2.0    105ms
 66   -36.74248067268   +  -13.85      -10.87    4.0    158ms
 67   -36.74248067268      -13.85      -10.99    2.0    108ms
 68   -36.74248067268   +    -Inf      -11.51    2.0    101ms
 69   -36.74248067268   +  -14.15      -11.52    3.0    136ms
 70   -36.74248067268      -14.15      -11.16    3.0    140ms
 71   -36.74248067268   +    -Inf      -11.71    3.0    133ms
 72   -36.74248067268   +  -13.85      -12.15    2.0    108ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73184560852                   -0.88   13.0    339ms
  2   -36.73923742493       -2.13       -1.36    1.0   86.9ms
  3   -36.73847073581   +   -3.12       -1.62    3.0    120ms
  4   -36.74216175635       -2.43       -2.25    1.0   91.2ms
  5   -36.74210843615   +   -4.27       -2.45    4.0    131ms
  6   -36.74235748851       -3.60       -2.36    4.0    108ms
  7   -36.74240194936       -4.35       -2.75    1.0   92.8ms
  8   -36.74247444801       -4.14       -3.17    1.0   92.9ms
  9   -36.74247858298       -5.38       -3.47    3.0    107ms
 10   -36.74248010905       -5.82       -3.78    3.0    113ms
 11   -36.74248038258       -6.56       -4.10    6.0    131ms
 12   -36.74248065771       -6.56       -4.53    2.0    105ms
 13   -36.74248067023       -7.90       -5.00    3.0    139ms
 14   -36.74248067161       -8.86       -5.27    1.0   92.3ms
 15   -36.74248067260       -9.00       -5.80    3.0    123ms
 16   -36.74248067267      -10.13       -5.98    3.0    137ms
 17   -36.74248067265   +  -10.72       -6.07    2.0    101ms
 18   -36.74248067268      -10.62       -6.47    2.0    104ms
 19   -36.74248067268      -11.28       -6.90    2.0    128ms
 20   -36.74248067268      -12.60       -7.12    2.0   98.1ms
 21   -36.74248067268      -14.15       -7.38    2.0    129ms
 22   -36.74248067268      -13.37       -7.65    2.0    101ms
 23   -36.74248067268   +  -14.15       -7.88    1.0   95.7ms
 24   -36.74248067268      -14.15       -8.26    2.0    110ms
 25   -36.74248067268   +    -Inf       -8.42    3.0    133ms
 26   -36.74248067268   +  -13.85       -8.76    2.0   97.9ms
 27   -36.74248067268      -14.15       -8.92    3.0    116ms
 28   -36.74248067268      -14.15       -9.11    2.0    101ms
 29   -36.74248067268   +    -Inf       -9.26    2.0    128ms
 30   -36.74248067268   +    -Inf       -9.68    1.0   93.0ms
 31   -36.74248067268   +    -Inf       -9.93    3.0    136ms
 32   -36.74248067268   +    -Inf      -10.18    1.0   96.7ms
 33   -36.74248067268   +  -14.15      -10.99    2.0    128ms
 34   -36.74248067268      -14.15      -11.27    4.0    148ms
 35   -36.74248067268   +    -Inf      -11.44    3.0    109ms
 36   -36.74248067268   +    -Inf      -11.75    2.0   98.0ms
 37   -36.74248067268   +    -Inf      -12.12    5.0    120ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448939188343

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.24421154609604

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723586294004415

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).