Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.oncvpsp3.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73531893402                   -0.88   11.0    402ms
  2   -36.72334171715   +   -1.92       -1.63    1.0   96.3ms
  3   -12.80539502420   +    1.38       -0.38    8.0    222ms
  4   -36.69651556233        1.38       -1.34    8.0    209ms
  5   -36.70827751734       -1.93       -1.71    2.0    128ms
  6   -36.33102751100   +   -0.42       -1.26    4.0    144ms
  7   -36.72397256281       -0.41       -1.81    3.0    151ms
  8   -36.74134456692       -1.76       -2.28    2.0    131ms
  9   -36.74160915865       -3.58       -2.25    3.0    143ms
 10   -36.74133007527   +   -3.55       -2.28    2.0    114ms
 11   -36.74200311688       -3.17       -2.72    1.0    100ms
 12   -36.74205126599       -4.32       -2.90    1.0    102ms
 13   -36.74207317789       -4.66       -3.09    2.0    138ms
 14   -36.74208106177       -5.10       -3.69    1.0   97.5ms
 15   -36.74169040375   +   -3.41       -2.77    5.0    181ms
 16   -36.74208289959       -3.41       -3.93    4.0    307ms
 17   -36.74207838538   +   -5.35       -3.41    3.0    759ms
 18   -36.74200703653   +   -4.15       -3.13    4.0    200ms
 19   -36.74208308969       -4.12       -4.09    4.0    163ms
 20   -36.74208371523       -6.20       -4.35    2.0    121ms
 21   -36.74208376195       -7.33       -4.81    2.0    150ms
 22   -36.74208374414   +   -7.75       -4.65    2.0    116ms
 23   -36.74208376211       -7.75       -4.90    1.0   98.0ms
 24   -36.74208376449       -8.62       -5.44    2.0    109ms
 25   -36.74208376406   +   -9.36       -5.37    3.0    142ms
 26   -36.74208376463       -9.24       -5.73    1.0   98.9ms
 27   -36.74208363055   +   -6.87       -4.50    6.0    202ms
 28   -36.74208376470       -6.87       -6.00    5.0    207ms
 29   -36.74208376478      -10.10       -6.20    2.0    137ms
 30   -36.74208376464   +   -9.88       -5.96    4.0    154ms
 31   -36.74208376371   +   -9.03       -5.54    4.0    164ms
 32   -36.74208376479       -8.97       -6.41    4.0    169ms
 33   -36.74208376479      -11.58       -6.77    2.0    103ms
 34   -36.74208376479      -12.07       -6.93    2.0    137ms
 35   -36.74208376479      -12.62       -7.48    1.0    101ms
 36   -36.74208376479      -13.25       -7.77    2.0    138ms
 37   -36.74208376479   +  -13.85       -7.58    3.0    128ms
 38   -36.74208376479      -13.85       -8.12    1.0    101ms
 39   -36.74208376479   +  -14.15       -8.10    3.0    145ms
 40   -36.74208376479   +  -13.67       -7.77    3.0    175ms
 41   -36.74208376479      -13.45       -8.66    4.0    140ms
 42   -36.74208376479   +  -14.15       -8.63    3.0    158ms
 43   -36.74208376479   +  -13.67       -7.90    4.0    164ms
 44   -36.74208376479      -13.55       -8.85    4.0    164ms
 45   -36.74208376479   +  -13.85       -9.33    2.0    110ms
 46   -36.74208376479      -14.15       -9.16    3.0    146ms
 47   -36.74208376479   +  -14.15       -9.91    2.0    117ms
 48   -36.74208376479      -14.15      -10.03    3.0    176ms
 49   -36.74208376479      -14.15      -10.15    2.0    120ms
 50   -36.74208376479   +  -13.85      -10.58    1.0   97.1ms
 51   -36.74208376479      -13.85      -10.81    2.0    138ms
 52   -36.74208376479   +  -14.15      -11.00    2.0    109ms
 53   -36.74208376479   +  -14.15      -11.14    2.0    119ms
 54   -36.74208376479      -13.85      -10.68    4.0    165ms
 55   -36.74208376479   +  -13.85      -11.27    3.0    147ms
 56   -36.74208376479   +    -Inf      -11.85    3.0    128ms
 57   -36.74208376479      -14.15      -11.98    3.0    146ms
 58   -36.74208376479   +  -14.15      -12.20    2.0    104ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73406806115                   -0.88   11.0    371ms
  2   -36.73992122803       -2.23       -1.36    1.0   96.8ms
  3   -36.73807959166   +   -2.73       -1.62    3.0    127ms
  4   -36.74186253640       -2.42       -2.35    2.0    119ms
  5   -36.74189102830       -4.55       -2.53    4.0    147ms
  6   -36.74202521916       -3.87       -2.75    7.0    140ms
  7   -36.74206861779       -4.36       -2.77    3.0    114ms
  8   -36.74206915422       -6.27       -3.25    2.0    109ms
  9   -36.74208326893       -4.85       -3.53    3.0    145ms
 10   -36.74208328272       -7.86       -4.00    2.0    110ms
 11   -36.74208345679       -6.76       -4.28    5.0    137ms
 12   -36.74208374089       -6.55       -4.56    3.0    169ms
 13   -36.74208376431       -7.63       -5.09    2.0    105ms
 14   -36.74208376466       -9.44       -5.40    8.0    184ms
 15   -36.74208376475      -10.08       -5.73    2.0    107ms
 16   -36.74208376477      -10.64       -6.17    4.0    127ms
 17   -36.74208376479      -10.76       -6.65    3.0    147ms
 18   -36.74208376479      -13.15       -6.83    3.0    147ms
 19   -36.74208376479      -12.67       -6.95    5.0    142ms
 20   -36.74208376479      -11.96       -7.47    2.0    111ms
 21   -36.74208376479      -13.30       -7.88    4.0    155ms
 22   -36.74208376479      -13.85       -8.18    7.0    144ms
 23   -36.74208376479   +    -Inf       -8.29    3.0    145ms
 24   -36.74208376479   +    -Inf       -8.63    2.0    109ms
 25   -36.74208376479   +    -Inf       -8.85    3.0    127ms
 26   -36.74208376479   +    -Inf       -9.47    1.0    102ms
 27   -36.74208376479   +  -13.85       -9.67    8.0    199ms
 28   -36.74208376479   +    -Inf      -10.04    2.0    107ms
 29   -36.74208376479      -14.15      -10.18    3.0    148ms
 30   -36.74208376479      -14.15      -10.62    1.0    103ms
 31   -36.74208376479   +  -14.15      -10.83    5.0    135ms
 32   -36.74208376479   +    -Inf      -11.23    3.0    146ms
 33   -36.74208376479   +    -Inf      -11.55    5.0    130ms
 34   -36.74208376479      -14.15      -11.88    3.0    138ms
 35   -36.74208376479   +  -13.85      -12.15    2.0    142ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV)
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.024488546359336

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.24421065794048

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723592146727547

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).