Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73387871262                   -0.88   11.0    390ms
  2   -36.61844390135   +   -0.94       -1.42    1.0   94.9ms
  3   +40.70055564237   +    1.89       -0.12    7.0    258ms
  4   -36.42761476761        1.89       -1.09    7.0    270ms
  5   -34.46647276878   +    0.29       -0.89    3.0    150ms
  6   -36.41556085078        0.29       -1.26    4.0    172ms
  7   -36.71851441242       -0.52       -1.76    3.0    139ms
  8   -36.73869856578       -1.69       -2.04    1.0    102ms
  9   -36.73996654366       -2.90       -2.02    2.0    134ms
 10   -36.74065054476       -3.16       -2.22    2.0    121ms
 11   -36.74118519154       -3.27       -2.13    2.0    124ms
 12   -36.74198752246       -3.10       -2.58    2.0    111ms
 13   -36.74223204586       -3.61       -2.69    1.0    103ms
 14   -36.74219023883   +   -4.38       -2.75    1.0   98.2ms
 15   -36.74215998009   +   -4.52       -2.71    1.0    104ms
 16   -36.74234079120       -3.74       -2.93    3.0    127ms
 17   -36.74241499210       -4.13       -3.07    3.0    130ms
 18   -36.74201726850   +   -3.40       -2.70    3.0    134ms
 19   -36.74241649565       -3.40       -3.09    3.0    149ms
 20   -36.74247343498       -4.24       -3.56    2.0    116ms
 21   -36.74247966624       -5.21       -3.65    2.0    140ms
 22   -36.74247955068   +   -6.94       -3.89    2.0    120ms
 23   -36.74248055606       -6.00       -4.12    1.0    100ms
 24   -36.74247868678   +   -5.73       -3.89    2.0    139ms
 25   -36.74248065549       -5.71       -4.46    3.0    124ms
 26   -36.74248037677   +   -6.55       -4.30    3.0    150ms
 27   -36.74248066576       -6.54       -4.85    2.0    115ms
 28   -36.74248061207   +   -7.27       -4.58    3.0    152ms
 29   -36.74248065762       -7.34       -4.95    3.0    137ms
 30   -36.74248066364       -8.22       -5.05    2.0    115ms
 31   -36.74248066876       -8.29       -5.25    3.0    124ms
 32   -36.74248067242       -8.44       -5.78    1.0    103ms
 33   -36.74248067260       -9.74       -5.76    3.0    147ms
 34   -36.74248067236   +   -9.62       -5.71    2.0    123ms
 35   -36.74248067249       -9.91       -5.84    3.0    135ms
 36   -36.74248067257      -10.10       -5.97    2.0    121ms
 37   -36.74248067264      -10.15       -6.19    1.0   97.2ms
 38   -36.74248067266      -10.67       -6.30    3.0    143ms
 39   -36.74248067267      -10.87       -6.42    2.0    134ms
 40   -36.74248067268      -10.97       -6.70    2.0    118ms
 41   -36.74248067268   +  -11.78       -6.69    2.0    121ms
 42   -36.74248067268   +  -11.75       -6.74    3.0    143ms
 43   -36.74248067268      -11.40       -7.48    2.0    107ms
 44   -36.74248067268   +  -12.08       -7.04    4.0    179ms
 45   -36.74248067268      -12.05       -7.65    3.0    137ms
 46   -36.74248067268      -13.67       -8.00    2.0    107ms
 47   -36.74248067268   +    -Inf       -8.16    2.0    138ms
 48   -36.74248067268   +    -Inf       -7.95    3.0    141ms
 49   -36.74248067268      -14.15       -8.24    2.0    131ms
 50   -36.74248067268   +  -14.15       -8.80    2.0    110ms
 51   -36.74248067268      -14.15       -8.68    3.0    157ms
 52   -36.74248067268   +    -Inf       -9.06    2.0    107ms
 53   -36.74248067268   +    -Inf       -9.00    3.0    143ms
 54   -36.74248067268      -14.15       -9.42    2.0    115ms
 55   -36.74248067268   +  -14.15       -9.54    2.0    139ms
 56   -36.74248067268   +    -Inf       -9.70    2.0    114ms
 57   -36.74248067268      -14.15       -9.85    2.0    122ms
 58   -36.74248067268   +  -14.15       -9.86    1.0   97.9ms
 59   -36.74248067268      -14.15      -10.33    1.0   98.1ms
 60   -36.74248067268   +    -Inf      -10.20    3.0    150ms
 61   -36.74248067268   +  -14.15      -10.02    3.0    167ms
 62   -36.74248067268      -14.15      -10.23    3.0    143ms
 63   -36.74248067268   +    -Inf      -10.12    2.0    115ms
 64   -36.74248067268   +    -Inf      -10.65    2.0    132ms
 65   -36.74248067268   +  -14.15      -10.94    2.0    106ms
 66   -36.74248067268   +    -Inf      -10.65    3.0    153ms
 67   -36.74248067268   +    -Inf      -11.20    3.0    143ms
 68   -36.74248067268   +  -13.85      -11.69    1.0    104ms
 69   -36.74248067268      -13.67      -11.74    3.0    147ms
 70   -36.74248067268   +  -14.15      -12.06    1.0    104ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73352333634                   -0.88   13.0    383ms
  2   -36.73993026933       -2.19       -1.37    1.0   93.7ms
  3   -36.74099540517       -2.97       -1.95    3.0    140ms
  4   -36.74208051075       -2.96       -2.06    1.0   92.7ms
  5   -36.74226249831       -3.74       -2.63    4.0    111ms
  6   -36.74243733365       -3.76       -2.68    3.0    150ms
  7   -36.74246224554       -4.60       -3.04    1.0   96.8ms
  8   -36.74247977237       -4.76       -3.52    4.0    120ms
  9   -36.74247945913   +   -6.50       -3.74    3.0    144ms
 10   -36.74248057097       -5.95       -4.07    2.0    113ms
 11   -36.74248062642       -7.26       -4.21    3.0    115ms
 12   -36.74248050199   +   -6.91       -4.36    3.0    129ms
 13   -36.74248066224       -6.80       -4.76    2.0    112ms
 14   -36.74248067210       -8.01       -5.19    3.0    147ms
 15   -36.74248067045   +   -8.78       -5.23    3.0    120ms
 16   -36.74248067263       -8.66       -5.65    1.0    105ms
 17   -36.74248067243   +   -9.71       -5.81    3.0    185ms
 18   -36.74248067263       -9.69       -6.11    1.0    106ms
 19   -36.74248067268      -10.33       -6.69    3.0    142ms
 20   -36.74248067268      -11.55       -6.98    3.0    150ms
 21   -36.74248067268      -12.53       -7.15    2.0    110ms
 22   -36.74248067268      -12.66       -7.39    2.0    120ms
 23   -36.74248067268      -13.00       -7.84    3.0    127ms
 24   -36.74248067268   +  -13.85       -8.05    3.0    151ms
 25   -36.74248067268   +    -Inf       -8.46    2.0    106ms
 26   -36.74248067268   +  -14.15       -8.62    3.0    151ms
 27   -36.74248067268      -14.15       -8.97    1.0    100ms
 28   -36.74248067268      -13.85       -9.54    3.0    128ms
 29   -36.74248067268   +  -13.85       -9.56    3.0    152ms
 30   -36.74248067268   +    -Inf      -10.01    1.0    104ms
 31   -36.74248067268      -13.85      -10.40    2.0    135ms
 32   -36.74248067268   +  -13.85      -10.52    4.0    132ms
 33   -36.74248067268   +    -Inf      -10.92    2.0    111ms
 34   -36.74248067268   +    -Inf      -11.08    3.0    146ms
 35   -36.74248067268      -13.85      -11.56    1.0    100ms
 36   -36.74248067268   +  -13.55      -11.63    3.0    157ms
 37   -36.74248067268      -13.85      -11.99    1.0    100ms
 38   -36.74248067268      -14.15      -12.35    3.0    127ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.024489049660694

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.24421118661838

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723584660079539

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).