AtomsBase integration

AtomsBase.jl is a common interface for representing atomic structures in Julia. DFTK directly supports using such structures to run a calculation as is demonstrated here.

using DFTK
using AtomsBuilder

Feeding an AtomsBase AbstractSystem to DFTK

In this example we construct a bulk silicon system using the bulk function from AtomsBuilder. This function uses tabulated data to set up a reasonable starting geometry and lattice for bulk silicon.

system = bulk(:Si)
FlexibleSystem(Si₂, periodicity = TTT):
    cell_vectors      : [       0    2.715    2.715;
                            2.715        0    2.715;
                            2.715    2.715        0]u"Å"

    Atom(Si, [       0,        0,        0]u"Å")
    Atom(Si, [  1.3575,   1.3575,   1.3575]u"Å")

By default the atoms of an AbstractSystem employ the bare Coulomb potential. To employ pseudpotential models (which is almost always advisable for plane-wave DFT) one employs the pseudopotential keyword argument in model constructors such as model_DFT. For example we can employ a PseudoFamily object from the PseudoPotentialData package. See its documentation for more information on the available pseudopotential families and how to select them.

using PseudoPotentialData  # defines PseudoFamily

pd_lda_family = PseudoFamily("dojo.nc.sr.lda.v0_4_1.oncvpsp3.standard.upf")
model = model_DFT(system;
                  functionals=LDA(),
                  temperature=1e-3,
                  pseudopotentials=pd_lda_family)
Model(lda_x+lda_c_pw, 3D):
    lattice (in Bohr)    : [0         , 5.13061   , 5.13061   ]
                           [5.13061   , 0         , 5.13061   ]
                           [5.13061   , 5.13061   , 0         ]
    unit cell volume     : 270.11 Bohr³

    atoms                : Si₂
    atom potentials      : ElementPsp(Si, "/home/runner/.julia/artifacts/1ea71a84cf375286564538a9cab789991f4bf1f4/Si.upf")
                           ElementPsp(Si, "/home/runner/.julia/artifacts/1ea71a84cf375286564538a9cab789991f4bf1f4/Si.upf")

    num. electrons       : 8
    spin polarization    : none
    temperature          : 0.001 Ha
    smearing             : DFTK.Smearing.FermiDirac()

    terms                : Kinetic()
                           AtomicLocal()
                           AtomicNonlocal()
                           Ewald(nothing)
                           PspCorrection()
                           Hartree()
                           Xc(lda_x, lda_c_pw)
                           Entropy()

Alternatively the pseudopotentials object also accepts a Dict{Symbol,String}, which provides for each element symbol the filename or identifier of the pseudopotential to be employed, e.g.

model = model_DFT(system;
                  functionals=LDA(),
                  temperature=1e-3,
                  pseudopotentials=Dict(:Si => "hgh/lda/si-q4"))
Model(lda_x+lda_c_pw, 3D):
    lattice (in Bohr)    : [0         , 5.13061   , 5.13061   ]
                           [5.13061   , 0         , 5.13061   ]
                           [5.13061   , 5.13061   , 0         ]
    unit cell volume     : 270.11 Bohr³

    atoms                : Si₂
    atom potentials      : ElementPsp(Si, "hgh/lda/si-q4")
                           ElementPsp(Si, "hgh/lda/si-q4")

    num. electrons       : 8
    spin polarization    : none
    temperature          : 0.001 Ha
    smearing             : DFTK.Smearing.FermiDirac()

    terms                : Kinetic()
                           AtomicLocal()
                           AtomicNonlocal()
                           Ewald(nothing)
                           PspCorrection()
                           Hartree()
                           Xc(lda_x, lda_c_pw)
                           Entropy()

We can then discretise such a model and solve:

basis  = PlaneWaveBasis(model; Ecut=15, kgrid=[4, 4, 4])
scfres = self_consistent_field(basis, tol=1e-8);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -7.921718134493                   -0.69    6.2    262ms
  2   -7.926160277393       -2.35       -1.22    1.0    165ms
  3   -7.926838399200       -3.17       -2.37    1.9    238ms
  4   -7.926861174510       -4.64       -3.03    2.1    783ms
  5   -7.926861646000       -6.33       -3.38    2.0    179ms
  6   -7.926861668110       -7.66       -3.75    1.5    142ms
  7   -7.926861678709       -7.97       -4.08    1.2    136ms
  8   -7.926861681792       -8.51       -5.06    1.4    138ms
  9   -7.926861681859      -10.18       -5.18    3.2    202ms
 10   -7.926861681872      -10.88       -6.40    1.0    133ms
 11   -7.926861681873      -12.14       -6.53    3.0    187ms
 12   -7.926861681873      -14.21       -7.42    1.0    158ms
┌ Warning: Eigensolver not converged
  n_iter =
   8-element Vector{Int64}:
    2
    2
    2
    3
    3
    2
    2
    3
@ DFTK ~/work/DFTK.jl/DFTK.jl/src/scf/self_consistent_field.jl:76
 13   -7.926861681873      -15.05       -7.66    2.4    164ms
 14   -7.926861681873   +  -14.57       -7.89    1.1    141ms
 15   -7.926861681873      -14.35       -9.58    1.5    350ms

If we did not want to use AtomsBuilder we could of course use any other package which yields an AbstractSystem object. This includes:

Reading a system using AtomsIO

Read a file using AtomsIO, which directly yields an AbstractSystem.

using AtomsIO
system = load_system("Si.extxyz");

Run the LDA calculation:

pseudopotentials = Dict(:Si => "hgh/lda/si-q4")
model  = model_DFT(system; pseudopotentials, functionals=LDA(), temperature=1e-3)
basis  = PlaneWaveBasis(model; Ecut=15, kgrid=[4, 4, 4])
scfres = self_consistent_field(basis, tol=1e-8);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -7.921721310671                   -0.69    5.9    268ms
  2   -7.926168572746       -2.35       -1.22    1.0    141ms
  3   -7.926838043091       -3.17       -2.37    1.9    165ms
  4   -7.926861195075       -4.64       -3.03    2.1    177ms
  5   -7.926861647017       -6.34       -3.39    1.9    157ms
  6   -7.926861669314       -7.65       -3.78    1.8    149ms
  7   -7.926861678938       -8.02       -4.11    1.4    143ms
  8   -7.926861681795       -8.54       -5.07    1.4    141ms
  9   -7.926861681859      -10.19       -5.20    2.8    176ms
 10   -7.926861681872      -10.89       -6.42    1.0    137ms
 11   -7.926861681873      -12.14       -6.54    3.1    194ms
 12   -7.926861681873      -14.15       -7.25    1.0    137ms
 13   -7.926861681873   +  -14.75       -7.67    1.9    154ms
 14   -7.926861681873   +    -Inf       -8.46    1.8    173ms

The same could be achieved using ExtXYZ by system = Atoms(read_frame("Si.extxyz")), since the ExtXYZ.Atoms object is directly AtomsBase-compatible.

Directly setting up a system in AtomsBase

using AtomsBase
using Unitful
using UnitfulAtomic

# Construct a system in the AtomsBase world
a = 10.26u"bohr"  # Silicon lattice constant
lattice = a / 2 * [[0, 1, 1.],  # Lattice as vector of vectors
                   [1, 0, 1.],
                   [1, 1, 0.]]
atoms  = [:Si => ones(3)/8, :Si => -ones(3)/8]
system = periodic_system(atoms, lattice; fractional=true)

# Now run the LDA calculation:
pseudopotentials = Dict(:Si => "hgh/lda/si-q4")
model  = model_DFT(system; pseudopotentials, functionals=LDA(), temperature=1e-3)
basis  = PlaneWaveBasis(model; Ecut=15, kgrid=[4, 4, 4])
scfres = self_consistent_field(basis, tol=1e-4);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -7.921720433959                   -0.69    5.9    291ms
  2   -7.926167646636       -2.35       -1.22    1.0    148ms
  3   -7.926842141940       -3.17       -2.37    1.9    182ms
  4   -7.926864595578       -4.65       -3.02    2.2    215ms
  5   -7.926865046688       -6.35       -3.34    2.0    182ms
  6   -7.926865074887       -7.55       -3.68    1.4    146ms
  7   -7.926865090665       -7.80       -4.17    1.0    131ms

Obtaining an AbstractSystem from DFTK data

At any point we can also get back the DFTK model as an AtomsBase-compatible AbstractSystem:

second_system = atomic_system(model)
FlexibleSystem(Si₂, periodicity = TTT):
    cell_vectors      : [       0     5.13     5.13;
                             5.13        0     5.13;
                             5.13     5.13        0]u"a₀"

    Atom(Si, [  1.2825,   1.2825,   1.2825]u"a₀")
    Atom(Si, [ -1.2825,  -1.2825,  -1.2825]u"a₀")

Similarly DFTK offers a method to the atomic_system and periodic_system functions (from AtomsBase), which enable a seamless conversion of the usual data structures for setting up DFTK calculations into an AbstractSystem:

lattice = 5.431u"Å" / 2 * [[0 1 1.];
                           [1 0 1.];
                           [1 1 0.]];
Si = ElementPsp(:Si, load_psp("hgh/lda/Si-q4"))
atoms     = [Si, Si]
positions = [ones(3)/8, -ones(3)/8]

third_system = atomic_system(lattice, atoms, positions)
FlexibleSystem(Si₂, periodicity = TTT):
    cell_vectors      : [       0  5.13155  5.13155;
                          5.13155        0  5.13155;
                          5.13155  5.13155        0]u"a₀"

    Atom(Si, [ 1.28289,  1.28289,  1.28289]u"a₀")
    Atom(Si, [-1.28289, -1.28289, -1.28289]u"a₀")