AtomsBase integration
AtomsBase.jl is a common interface for representing atomic structures in Julia. DFTK directly supports using such structures to run a calculation as is demonstrated here.
using DFTK
using AtomsBuilderFeeding an AtomsBase AbstractSystem to DFTK
In this example we construct a bulk silicon system using the bulk function from AtomsBuilder. This function uses tabulated data to set up a reasonable starting geometry and lattice for bulk silicon.
system = bulk(:Si)FlexibleSystem(Si₂, periodicity = TTT):
cell_vectors : [ 0 2.715 2.715;
2.715 0 2.715;
2.715 2.715 0]u"Å"
Atom(Si, [ 0, 0, 0]u"Å")
Atom(Si, [ 1.3575, 1.3575, 1.3575]u"Å")
By default the atoms of an AbstractSystem employ the bare Coulomb potential. To employ pseudpotential models (which is almost always advisable for plane-wave DFT) one employs the pseudopotential keyword argument in model constructors such as model_DFT. For example we can employ a PseudoFamily object from the PseudoPotentialData package. See its documentation for more information on the available pseudopotential families and how to select them.
using PseudoPotentialData # defines PseudoFamily
pd_lda_family = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model = model_DFT(system; functionals=LDA(), temperature=1e-3,
pseudopotentials=pd_lda_family)Model(lda_x+lda_c_pw, 3D):
lattice (in Bohr) : [0 , 5.13061 , 5.13061 ]
[5.13061 , 0 , 5.13061 ]
[5.13061 , 5.13061 , 0 ]
unit cell volume : 270.11 Bohr³
atoms : Si₂
pseudopot. family : PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
num. electrons : 8
spin polarization : none
temperature : 0.001 Ha
smearing : DFTK.Smearing.FermiDirac()
terms : Kinetic()
AtomicLocal()
AtomicNonlocal()
Ewald(nothing)
PspCorrection()
Hartree()
Xc(lda_x, lda_c_pw)
Entropy()Alternatively the pseudopotentials object also accepts a Dict{Symbol,String}, which provides for each element symbol the filename or identifier of the pseudopotential to be employed, e.g.
path_to_pspfile = PseudoFamily("cp2k.nc.sr.lda.v0_1.semicore.gth")[:Si]
model = model_DFT(system; functionals=LDA(), temperature=1e-3,
pseudopotentials=Dict(:Si => path_to_pspfile))Model(lda_x+lda_c_pw, 3D):
lattice (in Bohr) : [0 , 5.13061 , 5.13061 ]
[5.13061 , 0 , 5.13061 ]
[5.13061 , 5.13061 , 0 ]
unit cell volume : 270.11 Bohr³
atoms : Si₂
atom potentials : ElementPsp(:Si, "/home/runner/.julia/artifacts/966fd9cdcd7dbaba6dc2bf43ee50dd81e63e8837/Si.gth")
ElementPsp(:Si, "/home/runner/.julia/artifacts/966fd9cdcd7dbaba6dc2bf43ee50dd81e63e8837/Si.gth")
num. electrons : 8
spin polarization : none
temperature : 0.001 Ha
smearing : DFTK.Smearing.FermiDirac()
terms : Kinetic()
AtomicLocal()
AtomicNonlocal()
Ewald(nothing)
PspCorrection()
Hartree()
Xc(lda_x, lda_c_pw)
Entropy()We can then discretise such a model and solve:
basis = PlaneWaveBasis(model; Ecut=15, kgrid=[4, 4, 4])
scfres = self_consistent_field(basis, tol=1e-8);n Energy log10(ΔE) log10(Δρ) Diag Δtime
--- --------------- --------- --------- ---- ------
1 -7.921736022967 -0.69 5.6 254ms
2 -7.926132534565 -2.36 -1.22 1.0 219ms
3 -7.926832819593 -3.15 -2.37 2.0 169ms
4 -7.926861280156 -4.55 -2.99 3.0 217ms
5 -7.926861645684 -6.44 -3.38 1.8 175ms
6 -7.926861670526 -7.60 -3.84 1.5 170ms
7 -7.926861679754 -8.03 -4.21 1.6 167ms
8 -7.926861681775 -8.69 -4.99 1.4 156ms
9 -7.926861681856 -10.09 -5.17 2.4 191ms
10 -7.926861681870 -10.86 -5.71 1.1 158ms
11 -7.926861681872 -11.62 -6.39 1.4 161ms
12 -7.926861681873 -12.90 -7.53 2.2 191ms
13 -7.926861681873 -14.05 -7.35 3.4 217ms
14 -7.926861681873 + -14.15 -8.33 1.0 151msIf we did not want to use AtomsBuilder we could of course use any other package which yields an AbstractSystem object. This includes:
Reading a system using AtomsIO
Read a file using AtomsIO, which directly yields an AbstractSystem.
using AtomsIO
system = load_system("Si.extxyz");Run the LDA calculation:
pseudopotentials = PseudoFamily("cp2k.nc.sr.lda.v0_1.semicore.gth")
model = model_DFT(system; pseudopotentials, functionals=LDA(), temperature=1e-3)
basis = PlaneWaveBasis(model; Ecut=15, kgrid=[4, 4, 4])
scfres = self_consistent_field(basis, tol=1e-8);n Energy log10(ΔE) log10(Δρ) Diag Δtime
--- --------------- --------- --------- ---- ------
1 -7.921723973106 -0.69 5.5 239ms
2 -7.926132926751 -2.36 -1.22 1.0 150ms
3 -7.926834207161 -3.15 -2.37 2.0 197ms
4 -7.926861260583 -4.57 -3.01 3.1 220ms
5 -7.926861654194 -6.40 -3.44 1.9 175ms
6 -7.926861673391 -7.72 -3.95 1.6 165ms
7 -7.926861678571 -8.29 -4.08 1.8 165ms
8 -7.926861681119 -8.59 -4.38 1.0 156ms
9 -7.926861681833 -9.15 -4.92 1.2 153ms
10 -7.926861681869 -10.45 -5.57 1.8 174ms
11 -7.926861681872 -11.46 -6.13 2.0 183ms
12 -7.926861681873 -12.34 -6.32 1.9 174ms
13 -7.926861681873 -13.64 -6.90 1.1 159ms
14 -7.926861681873 -14.57 -7.09 1.6 163ms
15 -7.926861681873 + -15.05 -7.61 1.0 158ms
16 -7.926861681873 -14.75 -8.66 1.6 171msThe same could be achieved using ExtXYZ by system = Atoms(read_frame("Si.extxyz")), since the ExtXYZ.Atoms object is directly AtomsBase-compatible.
Directly setting up a system in AtomsBase
using AtomsBase
using Unitful
using UnitfulAtomic
# Construct a system in the AtomsBase world
a = 10.26u"bohr" # Silicon lattice constant
lattice = a / 2 * [[0, 1, 1.], # Lattice as vector of vectors
[1, 0, 1.],
[1, 1, 0.]]
atoms = [:Si => ones(3)/8, :Si => -ones(3)/8]
system = periodic_system(atoms, lattice; fractional=true)
# Now run the LDA calculation:
pseudopotentials = PseudoFamily("cp2k.nc.sr.lda.v0_1.semicore.gth")
model = model_DFT(system; pseudopotentials, functionals=LDA(), temperature=1e-3)
basis = PlaneWaveBasis(model; Ecut=15, kgrid=[4, 4, 4])
scfres = self_consistent_field(basis, tol=1e-4);n Energy log10(ΔE) log10(Δρ) Diag Δtime
--- --------------- --------- --------- ---- ------
1 -7.921738298862 -0.69 5.8 258ms
2 -7.926135037432 -2.36 -1.22 1.0 132ms
3 -7.926836863245 -3.15 -2.37 2.0 178ms
4 -7.926864755551 -4.55 -3.00 3.1 217ms
5 -7.926865063832 -6.51 -3.42 2.0 158ms
6 -7.926865084389 -7.69 -3.94 1.5 142ms
7 -7.926865090495 -8.21 -4.16 1.8 159msObtaining an AbstractSystem from DFTK data
At any point we can also get back the DFTK model as an AtomsBase-compatible AbstractSystem:
second_system = atomic_system(model)FlexibleSystem(Si₂, periodicity = TTT):
cell_vectors : [ 0 5.13 5.13;
5.13 0 5.13;
5.13 5.13 0]u"a₀"
Atom(Si, [ 1.2825, 1.2825, 1.2825]u"a₀")
Atom(Si, [ -1.2825, -1.2825, -1.2825]u"a₀")
Similarly DFTK offers a method to the atomic_system and periodic_system functions (from AtomsBase), which enable a seamless conversion of the usual data structures for setting up DFTK calculations into an AbstractSystem:
lattice = 5.431u"Å" / 2 * [[0 1 1.];
[1 0 1.];
[1 1 0.]];
Si = ElementPsp(:Si, pseudopotentials)
atoms = [Si, Si]
positions = [ones(3)/8, -ones(3)/8]
third_system = atomic_system(lattice, atoms, positions)FlexibleSystem(Si₂, periodicity = TTT):
cell_vectors : [ 0 5.13155 5.13155;
5.13155 0 5.13155;
5.13155 5.13155 0]u"a₀"
Atom(Si, [ 1.28289, 1.28289, 1.28289]u"a₀")
Atom(Si, [-1.28289, -1.28289, -1.28289]u"a₀")