Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model
. Values up to1e-2
atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solver
toself_consistent_field
, e.g.solver = scf_anderson_solver(; m=15)
(::DFTK.var"#anderson#788"{DFTK.var"#anderson#787#789"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)
All keyword arguments are passed through to
DFTK.AndersonAcceleration
.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiff
parameter of theAdaptiveDiagtol
algorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBands
algorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
AdaptiveBands(4, 7, 1.0e-6, 0.01)
Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptive
instead ofself_consistent_field
:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.2475696687092 -11.100308396749295 … -8.289845772418836 -11.100308396749355; -11.100308396749295 -9.130057825954333 … -9.13005779590304 -11.100308356766318; … ; -8.289845772418836 -9.13005779590304 … -4.149589921646132 -6.287956198204184; -11.100308396749353 -11.10030835676632 … -6.287956198204186 -9.11184822358513;;; -11.100308396749297 -9.130057825954331 … -9.130057795903042 -11.10030835676632; -9.130057825954333 -6.9031594819867435 … -9.130057827304014 -10.053883826559865; … ; -9.13005779590304 -9.130057827304014 … -5.294353669218334 -7.54739920652754; -11.100308356766318 -10.053883826559865 … -7.547399206527541 -10.05388382655997;;; -8.289845772419135 -6.307621931521099 … -8.289845781018089 -9.111848193533799; -6.3076219315211 -4.516655665818655 … -7.547399237617372 -7.547399206527772; … ; -8.289845781018087 -7.5473992376173715 … -5.768969083585605 -7.5473992376174435; -9.111848193533797 -7.547399206527771 … -7.547399237617444 -9.111848224935036;;; … ;;; -5.301031718253524 -6.307621955793306 … -2.5497035732776 -3.84958217939041; -6.307621955793307 -6.903159495213572 … -3.3290606985484987 -4.878419358634104; … ; -2.5497035732775992 -3.329060698548499 … -1.2567984709034459 -1.8141947460421894; -3.8495821793904086 -4.878419358634106 … -1.814194746042189 -2.7147673353242885;;; -8.289845772418838 -9.13005779590304 … -4.1495899216461325 -6.287956198204184; -9.130057795903042 -9.130057827304013 … -5.294353669218333 -7.5473992065275395; … ; -4.1495899216461325 -5.294353669218334 … -1.9094492399164302 -2.894612367854015; -6.287956198204185 -7.5473992065275395 … -2.8946123678540143 -4.485542759375167;;; -11.100308396749355 -11.10030835676632 … -6.287956198204186 -9.111848223585127; -11.100308356766318 -10.053883826559865 … -7.547399206527542 -10.05388382655997; … ; -6.287956198204184 -7.547399206527542 … -2.8946123678540143 -4.485542759375167; -9.11184822358513 -10.05388382655997 … -4.485542759375168 -6.871104500140906])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.2475696687092 -11.100308396749295 … -8.289845772418836 -11.100308396749355; -11.100308396749295 -9.130057825954333 … -9.13005779590304 -11.100308356766318; … ; -8.289845772418836 -9.13005779590304 … -4.149589921646132 -6.287956198204184; -11.100308396749353 -11.10030835676632 … -6.287956198204186 -9.11184822358513;;; -11.100308396749297 -9.130057825954331 … -9.130057795903042 -11.10030835676632; -9.130057825954333 -6.9031594819867435 … -9.130057827304014 -10.053883826559865; … ; -9.13005779590304 -9.130057827304014 … -5.294353669218334 -7.54739920652754; -11.100308356766318 -10.053883826559865 … -7.547399206527541 -10.05388382655997;;; -8.289845772419135 -6.307621931521099 … -8.289845781018089 -9.111848193533799; -6.3076219315211 -4.516655665818655 … -7.547399237617372 -7.547399206527772; … ; -8.289845781018087 -7.5473992376173715 … -5.768969083585605 -7.5473992376174435; -9.111848193533797 -7.547399206527771 … -7.547399237617444 -9.111848224935036;;; … ;;; -5.301031718253524 -6.307621955793306 … -2.5497035732776 -3.84958217939041; -6.307621955793307 -6.903159495213572 … -3.3290606985484987 -4.878419358634104; … ; -2.5497035732775992 -3.329060698548499 … -1.2567984709034459 -1.8141947460421894; -3.8495821793904086 -4.878419358634106 … -1.814194746042189 -2.7147673353242885;;; -8.289845772418838 -9.13005779590304 … -4.1495899216461325 -6.287956198204184; -9.130057795903042 -9.130057827304013 … -5.294353669218333 -7.5473992065275395; … ; -4.1495899216461325 -5.294353669218334 … -1.9094492399164302 -2.894612367854015; -6.287956198204185 -7.5473992065275395 … -2.8946123678540143 -4.485542759375167;;; -11.100308396749355 -11.10030835676632 … -6.287956198204186 -9.111848223585127; -11.100308356766318 -10.053883826559865 … -7.547399206527542 -10.05388382655997; … ; -6.287956198204184 -7.547399206527542 … -2.8946123678540143 -4.485542759375167; -9.11184822358513 -10.05388382655997 … -4.485542759375168 -6.871104500140906]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.06230951331969267 - 0.00262175258826136im 0.018496700034306784 - 0.018209557408549938im … -0.06491376931981896 + 0.07879387255112963im 0.04247079571058724 + 0.08691594186713336im; -0.019731970225871157 - 0.010569515604345004im -0.025065297086290485 + 0.040743259198124715im … 0.060022896871485015 + 0.031327482171283144im 0.027401219630492656 - 0.010647156797282066im; … ; 0.020076842594448904 + 0.044930543177352095im 0.04904468393608776 + 0.0028270319062657047im … 0.027085333561550004 - 0.012102558960308065im -0.023935353396024373 + 0.007410345747153946im; 0.03951520383600265 + 0.05417105714184646im 0.04881096264158037 + 0.0005202875873670508im … -0.0653666849932799 - 0.03633847232373465im -0.06226244508009811 + 0.06994494001750358im;;; -0.033043546486245745 - 0.02403228999051127im -0.028777998000001484 + 0.045122322373821744im … 0.06487173949474319 + 0.070200477560029im 0.05972938624484969 - 0.013593729575283467im; -0.06380969280640349 + 0.06632800353206098im 0.031152277933923507 + 0.04879885095134706im … 0.09273337952145072 - 0.046294776615144174im -0.003104981547380115 - 0.04224238022747917im; … ; 0.0158564088522061 + 0.005133931478782364im -0.03883942015356226 - 0.012460392824415797im … -0.010204571055431643 - 0.010303525505726233im -0.012171507335961024 + 0.03394182943558857im; 0.015336565058874308 + 0.003935281929121084im -0.03972041536647458 + 0.037558795043045365im … -0.05257609030864346 + 0.04848839242366907im 0.007379606184990752 + 0.062428923386432855im;;; -0.04639257907012481 + 0.012960819118715012im -0.007037764503179972 + 0.0034276088056053935im … 0.09298631843974739 - 0.017165814633580977im -0.00010302002661992332 - 0.03884327403579711im; 0.024343016110617892 + 0.07110444017345398im 0.000294905892524136 - 0.03182092389608433im … 0.04351888443231379 - 0.06222780262023756im -0.02740224651382018 + 0.043667974099622656im; … ; -0.04598995942958861 + 0.0004418854119036999im -0.048885446261335244 + 0.06181020429420404im … -0.0014086887940297915 + 0.017219461351566923im 0.0033645286902779133 + 0.006826105208838938im; -0.014187865968044985 + 0.015961122511792207im 0.009511266987801428 + 0.03957345255603012im … 0.03022671403207488 + 0.04379844004338654im 0.029730479607974668 + 0.015822160969981965im;;; … ;;; 0.11076117271680402 - 0.05391693352978348im 0.035854046154700676 - 0.04844223032874764im … -0.01028937486180144 - 0.00977221604512002im 0.06762168816639635 + 0.0341863420439114im; 0.013816214175738403 - 0.013135359391989138im 0.0189598047916539 + 0.02365061453991154im … -0.09454372239994416 + 0.006868762328031507im -0.014543129112156099 + 0.04588465064210803im; … ; 0.08405821832965764 + 0.06256252891260158im 0.14700116428972337 + 0.023043444823208026im … 0.04631102128347804 - 0.06062073972718128im 0.02906089422248703 - 0.032602384384417704im; 0.2072121531466719 + 0.03640399062892344im 0.15494835629988393 - 0.0802573435394254im … -0.003003455360100573 + 0.001116753860934511im 0.06140631586744203 + 0.07728594246905315im;;; 0.009836643791713614 + 0.0029179060836599068im 0.08100488252294102 + 0.07791376836283678im … -0.06736123286359222 - 0.024676806530968907im -0.00022621615844465784 + 0.0005755553340448111im; 0.019044268932949755 + 0.045230323275444004im 0.09681663411401643 + 0.013310703173870272im … -0.10480559405282118 + 0.10052604756429376im 6.497983114373516e-5 + 0.0441184410493429im; … ; 0.17878033438209262 + 0.028436414442916377im 0.14717097457462325 - 0.060794849086493276im … -0.05132648689147655 + 0.04355060053937111im 0.06432757670085294 + 0.07060134848185984im; 0.1475329131654468 - 0.08392498241857796im 0.05288392556808709 - 0.05493727210870876im … 0.025887790587054003 + 0.04831717538269423im 0.11640188480483984 + 0.011175571558047942im;;; 0.059399480394355275 + 0.08525250965842235im 0.15135656290931399 + 0.015980745088918304im … -0.07823125585037836 - 0.008819422636489174im -0.036813716348025535 + 0.024359312219448974im; 0.014770243795777918 + 0.01667255275209499im 0.04102294189606636 - 0.03836015023398835im … -0.004522252719466664 + 0.047303093233473446im -0.008624854860205035 + 0.014177627990503806im; … ; 0.06673385601525776 - 0.020198127807718527im 0.0594809947380632 - 0.015687923532401928im … 0.037633938703219655 + 0.07370863820815911im 0.055079574251113025 - 0.011484295616714853im; 0.004694088043814149 + 0.02183123767182573im 0.07511337395618664 + 0.049771792461470885im … 0.0338849153809393 - 0.045386007070296656im -0.025453897244716073 - 0.03163758121147377im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.2475696687092 -11.100308396749295 … -8.289845772418836 -11.100308396749355; -11.100308396749295 -9.130057825954333 … -9.13005779590304 -11.100308356766318; … ; -8.289845772418836 -9.13005779590304 … -4.149589921646132 -6.287956198204184; -11.100308396749353 -11.10030835676632 … -6.287956198204186 -9.11184822358513;;; -11.100308396749297 -9.130057825954331 … -9.130057795903042 -11.10030835676632; -9.130057825954333 -6.9031594819867435 … -9.130057827304014 -10.053883826559865; … ; -9.13005779590304 -9.130057827304014 … -5.294353669218334 -7.54739920652754; -11.100308356766318 -10.053883826559865 … -7.547399206527541 -10.05388382655997;;; -8.289845772419135 -6.307621931521099 … -8.289845781018089 -9.111848193533799; -6.3076219315211 -4.516655665818655 … -7.547399237617372 -7.547399206527772; … ; -8.289845781018087 -7.5473992376173715 … -5.768969083585605 -7.5473992376174435; -9.111848193533797 -7.547399206527771 … -7.547399237617444 -9.111848224935036;;; … ;;; -5.301031718253524 -6.307621955793306 … -2.5497035732776 -3.84958217939041; -6.307621955793307 -6.903159495213572 … -3.3290606985484987 -4.878419358634104; … ; -2.5497035732775992 -3.329060698548499 … -1.2567984709034459 -1.8141947460421894; -3.8495821793904086 -4.878419358634106 … -1.814194746042189 -2.7147673353242885;;; -8.289845772418838 -9.13005779590304 … -4.1495899216461325 -6.287956198204184; -9.130057795903042 -9.130057827304013 … -5.294353669218333 -7.5473992065275395; … ; -4.1495899216461325 -5.294353669218334 … -1.9094492399164302 -2.894612367854015; -6.287956198204185 -7.5473992065275395 … -2.8946123678540143 -4.485542759375167;;; -11.100308396749355 -11.10030835676632 … -6.287956198204186 -9.111848223585127; -11.100308356766318 -10.053883826559865 … -7.547399206527542 -10.05388382655997; … ; -6.287956198204184 -7.547399206527542 … -2.8946123678540143 -4.485542759375167; -9.11184822358513 -10.05388382655997 … -4.485542759375168 -6.871104500140906])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.2475696687092 -11.100308396749295 … -8.289845772418836 -11.100308396749355; -11.100308396749295 -9.130057825954333 … -9.13005779590304 -11.100308356766318; … ; -8.289845772418836 -9.13005779590304 … -4.149589921646132 -6.287956198204184; -11.100308396749353 -11.10030835676632 … -6.287956198204186 -9.11184822358513;;; -11.100308396749297 -9.130057825954331 … -9.130057795903042 -11.10030835676632; -9.130057825954333 -6.9031594819867435 … -9.130057827304014 -10.053883826559865; … ; -9.13005779590304 -9.130057827304014 … -5.294353669218334 -7.54739920652754; -11.100308356766318 -10.053883826559865 … -7.547399206527541 -10.05388382655997;;; -8.289845772419135 -6.307621931521099 … -8.289845781018089 -9.111848193533799; -6.3076219315211 -4.516655665818655 … -7.547399237617372 -7.547399206527772; … ; -8.289845781018087 -7.5473992376173715 … -5.768969083585605 -7.5473992376174435; -9.111848193533797 -7.547399206527771 … -7.547399237617444 -9.111848224935036;;; … ;;; -5.301031718253524 -6.307621955793306 … -2.5497035732776 -3.84958217939041; -6.307621955793307 -6.903159495213572 … -3.3290606985484987 -4.878419358634104; … ; -2.5497035732775992 -3.329060698548499 … -1.2567984709034459 -1.8141947460421894; -3.8495821793904086 -4.878419358634106 … -1.814194746042189 -2.7147673353242885;;; -8.289845772418838 -9.13005779590304 … -4.1495899216461325 -6.287956198204184; -9.130057795903042 -9.130057827304013 … -5.294353669218333 -7.5473992065275395; … ; -4.1495899216461325 -5.294353669218334 … -1.9094492399164302 -2.894612367854015; -6.287956198204185 -7.5473992065275395 … -2.8946123678540143 -4.485542759375167;;; -11.100308396749355 -11.10030835676632 … -6.287956198204186 -9.111848223585127; -11.100308356766318 -10.053883826559865 … -7.547399206527542 -10.05388382655997; … ; -6.287956198204184 -7.547399206527542 … -2.8946123678540143 -4.485542759375167; -9.11184822358513 -10.05388382655997 … -4.485542759375168 -6.871104500140906]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.06230951331969267 - 0.00262175258826136im 0.018496700034306784 - 0.018209557408549938im … -0.06491376931981896 + 0.07879387255112963im 0.04247079571058724 + 0.08691594186713336im; -0.019731970225871157 - 0.010569515604345004im -0.025065297086290485 + 0.040743259198124715im … 0.060022896871485015 + 0.031327482171283144im 0.027401219630492656 - 0.010647156797282066im; … ; 0.020076842594448904 + 0.044930543177352095im 0.04904468393608776 + 0.0028270319062657047im … 0.027085333561550004 - 0.012102558960308065im -0.023935353396024373 + 0.007410345747153946im; 0.03951520383600265 + 0.05417105714184646im 0.04881096264158037 + 0.0005202875873670508im … -0.0653666849932799 - 0.03633847232373465im -0.06226244508009811 + 0.06994494001750358im;;; -0.033043546486245745 - 0.02403228999051127im -0.028777998000001484 + 0.045122322373821744im … 0.06487173949474319 + 0.070200477560029im 0.05972938624484969 - 0.013593729575283467im; -0.06380969280640349 + 0.06632800353206098im 0.031152277933923507 + 0.04879885095134706im … 0.09273337952145072 - 0.046294776615144174im -0.003104981547380115 - 0.04224238022747917im; … ; 0.0158564088522061 + 0.005133931478782364im -0.03883942015356226 - 0.012460392824415797im … -0.010204571055431643 - 0.010303525505726233im -0.012171507335961024 + 0.03394182943558857im; 0.015336565058874308 + 0.003935281929121084im -0.03972041536647458 + 0.037558795043045365im … -0.05257609030864346 + 0.04848839242366907im 0.007379606184990752 + 0.062428923386432855im;;; -0.04639257907012481 + 0.012960819118715012im -0.007037764503179972 + 0.0034276088056053935im … 0.09298631843974739 - 0.017165814633580977im -0.00010302002661992332 - 0.03884327403579711im; 0.024343016110617892 + 0.07110444017345398im 0.000294905892524136 - 0.03182092389608433im … 0.04351888443231379 - 0.06222780262023756im -0.02740224651382018 + 0.043667974099622656im; … ; -0.04598995942958861 + 0.0004418854119036999im -0.048885446261335244 + 0.06181020429420404im … -0.0014086887940297915 + 0.017219461351566923im 0.0033645286902779133 + 0.006826105208838938im; -0.014187865968044985 + 0.015961122511792207im 0.009511266987801428 + 0.03957345255603012im … 0.03022671403207488 + 0.04379844004338654im 0.029730479607974668 + 0.015822160969981965im;;; … ;;; 0.11076117271680402 - 0.05391693352978348im 0.035854046154700676 - 0.04844223032874764im … -0.01028937486180144 - 0.00977221604512002im 0.06762168816639635 + 0.0341863420439114im; 0.013816214175738403 - 0.013135359391989138im 0.0189598047916539 + 0.02365061453991154im … -0.09454372239994416 + 0.006868762328031507im -0.014543129112156099 + 0.04588465064210803im; … ; 0.08405821832965764 + 0.06256252891260158im 0.14700116428972337 + 0.023043444823208026im … 0.04631102128347804 - 0.06062073972718128im 0.02906089422248703 - 0.032602384384417704im; 0.2072121531466719 + 0.03640399062892344im 0.15494835629988393 - 0.0802573435394254im … -0.003003455360100573 + 0.001116753860934511im 0.06140631586744203 + 0.07728594246905315im;;; 0.009836643791713614 + 0.0029179060836599068im 0.08100488252294102 + 0.07791376836283678im … -0.06736123286359222 - 0.024676806530968907im -0.00022621615844465784 + 0.0005755553340448111im; 0.019044268932949755 + 0.045230323275444004im 0.09681663411401643 + 0.013310703173870272im … -0.10480559405282118 + 0.10052604756429376im 6.497983114373516e-5 + 0.0441184410493429im; … ; 0.17878033438209262 + 0.028436414442916377im 0.14717097457462325 - 0.060794849086493276im … -0.05132648689147655 + 0.04355060053937111im 0.06432757670085294 + 0.07060134848185984im; 0.1475329131654468 - 0.08392498241857796im 0.05288392556808709 - 0.05493727210870876im … 0.025887790587054003 + 0.04831717538269423im 0.11640188480483984 + 0.011175571558047942im;;; 0.059399480394355275 + 0.08525250965842235im 0.15135656290931399 + 0.015980745088918304im … -0.07823125585037836 - 0.008819422636489174im -0.036813716348025535 + 0.024359312219448974im; 0.014770243795777918 + 0.01667255275209499im 0.04102294189606636 - 0.03836015023398835im … -0.004522252719466664 + 0.047303093233473446im -0.008624854860205035 + 0.014177627990503806im; … ; 0.06673385601525776 - 0.020198127807718527im 0.0594809947380632 - 0.015687923532401928im … 0.037633938703219655 + 0.07370863820815911im 0.055079574251113025 - 0.011484295616714853im; 0.004694088043814149 + 0.02183123767182573im 0.07511337395618664 + 0.049771792461470885im … 0.0338849153809393 - 0.045386007070296656im -0.025453897244716073 - 0.03163758121147377im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.2475696687092 -11.100308396749295 … -8.289845772418836 -11.100308396749355; -11.100308396749295 -9.130057825954333 … -9.13005779590304 -11.100308356766318; … ; -8.289845772418836 -9.13005779590304 … -4.149589921646132 -6.287956198204184; -11.100308396749353 -11.10030835676632 … -6.287956198204186 -9.11184822358513;;; -11.100308396749297 -9.130057825954331 … -9.130057795903042 -11.10030835676632; -9.130057825954333 -6.9031594819867435 … -9.130057827304014 -10.053883826559865; … ; -9.13005779590304 -9.130057827304014 … -5.294353669218334 -7.54739920652754; -11.100308356766318 -10.053883826559865 … -7.547399206527541 -10.05388382655997;;; -8.289845772419135 -6.307621931521099 … -8.289845781018089 -9.111848193533799; -6.3076219315211 -4.516655665818655 … -7.547399237617372 -7.547399206527772; … ; -8.289845781018087 -7.5473992376173715 … -5.768969083585605 -7.5473992376174435; -9.111848193533797 -7.547399206527771 … -7.547399237617444 -9.111848224935036;;; … ;;; -5.301031718253524 -6.307621955793306 … -2.5497035732776 -3.84958217939041; -6.307621955793307 -6.903159495213572 … -3.3290606985484987 -4.878419358634104; … ; -2.5497035732775992 -3.329060698548499 … -1.2567984709034459 -1.8141947460421894; -3.8495821793904086 -4.878419358634106 … -1.814194746042189 -2.7147673353242885;;; -8.289845772418838 -9.13005779590304 … -4.1495899216461325 -6.287956198204184; -9.130057795903042 -9.130057827304013 … -5.294353669218333 -7.5473992065275395; … ; -4.1495899216461325 -5.294353669218334 … -1.9094492399164302 -2.894612367854015; -6.287956198204185 -7.5473992065275395 … -2.8946123678540143 -4.485542759375167;;; -11.100308396749355 -11.10030835676632 … -6.287956198204186 -9.111848223585127; -11.100308356766318 -10.053883826559865 … -7.547399206527542 -10.05388382655997; … ; -6.287956198204184 -7.547399206527542 … -2.8946123678540143 -4.485542759375167; -9.11184822358513 -10.05388382655997 … -4.485542759375168 -6.871104500140906])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.2475696687092 -11.100308396749295 … -8.289845772418836 -11.100308396749355; -11.100308396749295 -9.130057825954333 … -9.13005779590304 -11.100308356766318; … ; -8.289845772418836 -9.13005779590304 … -4.149589921646132 -6.287956198204184; -11.100308396749353 -11.10030835676632 … -6.287956198204186 -9.11184822358513;;; -11.100308396749297 -9.130057825954331 … -9.130057795903042 -11.10030835676632; -9.130057825954333 -6.9031594819867435 … -9.130057827304014 -10.053883826559865; … ; -9.13005779590304 -9.130057827304014 … -5.294353669218334 -7.54739920652754; -11.100308356766318 -10.053883826559865 … -7.547399206527541 -10.05388382655997;;; -8.289845772419135 -6.307621931521099 … -8.289845781018089 -9.111848193533799; -6.3076219315211 -4.516655665818655 … -7.547399237617372 -7.547399206527772; … ; -8.289845781018087 -7.5473992376173715 … -5.768969083585605 -7.5473992376174435; -9.111848193533797 -7.547399206527771 … -7.547399237617444 -9.111848224935036;;; … ;;; -5.301031718253524 -6.307621955793306 … -2.5497035732776 -3.84958217939041; -6.307621955793307 -6.903159495213572 … -3.3290606985484987 -4.878419358634104; … ; -2.5497035732775992 -3.329060698548499 … -1.2567984709034459 -1.8141947460421894; -3.8495821793904086 -4.878419358634106 … -1.814194746042189 -2.7147673353242885;;; -8.289845772418838 -9.13005779590304 … -4.1495899216461325 -6.287956198204184; -9.130057795903042 -9.130057827304013 … -5.294353669218333 -7.5473992065275395; … ; -4.1495899216461325 -5.294353669218334 … -1.9094492399164302 -2.894612367854015; -6.287956198204185 -7.5473992065275395 … -2.8946123678540143 -4.485542759375167;;; -11.100308396749355 -11.10030835676632 … -6.287956198204186 -9.111848223585127; -11.100308356766318 -10.053883826559865 … -7.547399206527542 -10.05388382655997; … ; -6.287956198204184 -7.547399206527542 … -2.8946123678540143 -4.485542759375167; -9.11184822358513 -10.05388382655997 … -4.485542759375168 -6.871104500140906]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.06230951331969267 - 0.00262175258826136im 0.018496700034306784 - 0.018209557408549938im … -0.06491376931981896 + 0.07879387255112963im 0.04247079571058724 + 0.08691594186713336im; -0.019731970225871157 - 0.010569515604345004im -0.025065297086290485 + 0.040743259198124715im … 0.060022896871485015 + 0.031327482171283144im 0.027401219630492656 - 0.010647156797282066im; … ; 0.020076842594448904 + 0.044930543177352095im 0.04904468393608776 + 0.0028270319062657047im … 0.027085333561550004 - 0.012102558960308065im -0.023935353396024373 + 0.007410345747153946im; 0.03951520383600265 + 0.05417105714184646im 0.04881096264158037 + 0.0005202875873670508im … -0.0653666849932799 - 0.03633847232373465im -0.06226244508009811 + 0.06994494001750358im;;; -0.033043546486245745 - 0.02403228999051127im -0.028777998000001484 + 0.045122322373821744im … 0.06487173949474319 + 0.070200477560029im 0.05972938624484969 - 0.013593729575283467im; -0.06380969280640349 + 0.06632800353206098im 0.031152277933923507 + 0.04879885095134706im … 0.09273337952145072 - 0.046294776615144174im -0.003104981547380115 - 0.04224238022747917im; … ; 0.0158564088522061 + 0.005133931478782364im -0.03883942015356226 - 0.012460392824415797im … -0.010204571055431643 - 0.010303525505726233im -0.012171507335961024 + 0.03394182943558857im; 0.015336565058874308 + 0.003935281929121084im -0.03972041536647458 + 0.037558795043045365im … -0.05257609030864346 + 0.04848839242366907im 0.007379606184990752 + 0.062428923386432855im;;; -0.04639257907012481 + 0.012960819118715012im -0.007037764503179972 + 0.0034276088056053935im … 0.09298631843974739 - 0.017165814633580977im -0.00010302002661992332 - 0.03884327403579711im; 0.024343016110617892 + 0.07110444017345398im 0.000294905892524136 - 0.03182092389608433im … 0.04351888443231379 - 0.06222780262023756im -0.02740224651382018 + 0.043667974099622656im; … ; -0.04598995942958861 + 0.0004418854119036999im -0.048885446261335244 + 0.06181020429420404im … -0.0014086887940297915 + 0.017219461351566923im 0.0033645286902779133 + 0.006826105208838938im; -0.014187865968044985 + 0.015961122511792207im 0.009511266987801428 + 0.03957345255603012im … 0.03022671403207488 + 0.04379844004338654im 0.029730479607974668 + 0.015822160969981965im;;; … ;;; 0.11076117271680402 - 0.05391693352978348im 0.035854046154700676 - 0.04844223032874764im … -0.01028937486180144 - 0.00977221604512002im 0.06762168816639635 + 0.0341863420439114im; 0.013816214175738403 - 0.013135359391989138im 0.0189598047916539 + 0.02365061453991154im … -0.09454372239994416 + 0.006868762328031507im -0.014543129112156099 + 0.04588465064210803im; … ; 0.08405821832965764 + 0.06256252891260158im 0.14700116428972337 + 0.023043444823208026im … 0.04631102128347804 - 0.06062073972718128im 0.02906089422248703 - 0.032602384384417704im; 0.2072121531466719 + 0.03640399062892344im 0.15494835629988393 - 0.0802573435394254im … -0.003003455360100573 + 0.001116753860934511im 0.06140631586744203 + 0.07728594246905315im;;; 0.009836643791713614 + 0.0029179060836599068im 0.08100488252294102 + 0.07791376836283678im … -0.06736123286359222 - 0.024676806530968907im -0.00022621615844465784 + 0.0005755553340448111im; 0.019044268932949755 + 0.045230323275444004im 0.09681663411401643 + 0.013310703173870272im … -0.10480559405282118 + 0.10052604756429376im 6.497983114373516e-5 + 0.0441184410493429im; … ; 0.17878033438209262 + 0.028436414442916377im 0.14717097457462325 - 0.060794849086493276im … -0.05132648689147655 + 0.04355060053937111im 0.06432757670085294 + 0.07060134848185984im; 0.1475329131654468 - 0.08392498241857796im 0.05288392556808709 - 0.05493727210870876im … 0.025887790587054003 + 0.04831717538269423im 0.11640188480483984 + 0.011175571558047942im;;; 0.059399480394355275 + 0.08525250965842235im 0.15135656290931399 + 0.015980745088918304im … -0.07823125585037836 - 0.008819422636489174im -0.036813716348025535 + 0.024359312219448974im; 0.014770243795777918 + 0.01667255275209499im 0.04102294189606636 - 0.03836015023398835im … -0.004522252719466664 + 0.047303093233473446im -0.008624854860205035 + 0.014177627990503806im; … ; 0.06673385601525776 - 0.020198127807718527im 0.0594809947380632 - 0.015687923532401928im … 0.037633938703219655 + 0.07370863820815911im 0.055079574251113025 - 0.011484295616714853im; 0.004694088043814149 + 0.02183123767182573im 0.07511337395618664 + 0.049771792461470885im … 0.0338849153809393 - 0.045386007070296656im -0.025453897244716073 - 0.03163758121147377im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.2475696687092 -11.100308396749295 … -8.289845772418836 -11.100308396749355; -11.100308396749295 -9.130057825954333 … -9.13005779590304 -11.100308356766318; … ; -8.289845772418836 -9.13005779590304 … -4.149589921646132 -6.287956198204184; -11.100308396749353 -11.10030835676632 … -6.287956198204186 -9.11184822358513;;; -11.100308396749297 -9.130057825954331 … -9.130057795903042 -11.10030835676632; -9.130057825954333 -6.9031594819867435 … -9.130057827304014 -10.053883826559865; … ; -9.13005779590304 -9.130057827304014 … -5.294353669218334 -7.54739920652754; -11.100308356766318 -10.053883826559865 … -7.547399206527541 -10.05388382655997;;; -8.289845772419135 -6.307621931521099 … -8.289845781018089 -9.111848193533799; -6.3076219315211 -4.516655665818655 … -7.547399237617372 -7.547399206527772; … ; -8.289845781018087 -7.5473992376173715 … -5.768969083585605 -7.5473992376174435; -9.111848193533797 -7.547399206527771 … -7.547399237617444 -9.111848224935036;;; … ;;; -5.301031718253524 -6.307621955793306 … -2.5497035732776 -3.84958217939041; -6.307621955793307 -6.903159495213572 … -3.3290606985484987 -4.878419358634104; … ; -2.5497035732775992 -3.329060698548499 … -1.2567984709034459 -1.8141947460421894; -3.8495821793904086 -4.878419358634106 … -1.814194746042189 -2.7147673353242885;;; -8.289845772418838 -9.13005779590304 … -4.1495899216461325 -6.287956198204184; -9.130057795903042 -9.130057827304013 … -5.294353669218333 -7.5473992065275395; … ; -4.1495899216461325 -5.294353669218334 … -1.9094492399164302 -2.894612367854015; -6.287956198204185 -7.5473992065275395 … -2.8946123678540143 -4.485542759375167;;; -11.100308396749355 -11.10030835676632 … -6.287956198204186 -9.111848223585127; -11.100308356766318 -10.053883826559865 … -7.547399206527542 -10.05388382655997; … ; -6.287956198204184 -7.547399206527542 … -2.8946123678540143 -4.485542759375167; -9.11184822358513 -10.05388382655997 … -4.485542759375168 -6.871104500140906])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.2475696687092 -11.100308396749295 … -8.289845772418836 -11.100308396749355; -11.100308396749295 -9.130057825954333 … -9.13005779590304 -11.100308356766318; … ; -8.289845772418836 -9.13005779590304 … -4.149589921646132 -6.287956198204184; -11.100308396749353 -11.10030835676632 … -6.287956198204186 -9.11184822358513;;; -11.100308396749297 -9.130057825954331 … -9.130057795903042 -11.10030835676632; -9.130057825954333 -6.9031594819867435 … -9.130057827304014 -10.053883826559865; … ; -9.13005779590304 -9.130057827304014 … -5.294353669218334 -7.54739920652754; -11.100308356766318 -10.053883826559865 … -7.547399206527541 -10.05388382655997;;; -8.289845772419135 -6.307621931521099 … -8.289845781018089 -9.111848193533799; -6.3076219315211 -4.516655665818655 … -7.547399237617372 -7.547399206527772; … ; -8.289845781018087 -7.5473992376173715 … -5.768969083585605 -7.5473992376174435; -9.111848193533797 -7.547399206527771 … -7.547399237617444 -9.111848224935036;;; … ;;; -5.301031718253524 -6.307621955793306 … -2.5497035732776 -3.84958217939041; -6.307621955793307 -6.903159495213572 … -3.3290606985484987 -4.878419358634104; … ; -2.5497035732775992 -3.329060698548499 … -1.2567984709034459 -1.8141947460421894; -3.8495821793904086 -4.878419358634106 … -1.814194746042189 -2.7147673353242885;;; -8.289845772418838 -9.13005779590304 … -4.1495899216461325 -6.287956198204184; -9.130057795903042 -9.130057827304013 … -5.294353669218333 -7.5473992065275395; … ; -4.1495899216461325 -5.294353669218334 … -1.9094492399164302 -2.894612367854015; -6.287956198204185 -7.5473992065275395 … -2.8946123678540143 -4.485542759375167;;; -11.100308396749355 -11.10030835676632 … -6.287956198204186 -9.111848223585127; -11.100308356766318 -10.053883826559865 … -7.547399206527542 -10.05388382655997; … ; -6.287956198204184 -7.547399206527542 … -2.8946123678540143 -4.485542759375167; -9.11184822358513 -10.05388382655997 … -4.485542759375168 -6.871104500140906]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.06230951331969267 - 0.00262175258826136im 0.018496700034306784 - 0.018209557408549938im … -0.06491376931981896 + 0.07879387255112963im 0.04247079571058724 + 0.08691594186713336im; -0.019731970225871157 - 0.010569515604345004im -0.025065297086290485 + 0.040743259198124715im … 0.060022896871485015 + 0.031327482171283144im 0.027401219630492656 - 0.010647156797282066im; … ; 0.020076842594448904 + 0.044930543177352095im 0.04904468393608776 + 0.0028270319062657047im … 0.027085333561550004 - 0.012102558960308065im -0.023935353396024373 + 0.007410345747153946im; 0.03951520383600265 + 0.05417105714184646im 0.04881096264158037 + 0.0005202875873670508im … -0.0653666849932799 - 0.03633847232373465im -0.06226244508009811 + 0.06994494001750358im;;; -0.033043546486245745 - 0.02403228999051127im -0.028777998000001484 + 0.045122322373821744im … 0.06487173949474319 + 0.070200477560029im 0.05972938624484969 - 0.013593729575283467im; -0.06380969280640349 + 0.06632800353206098im 0.031152277933923507 + 0.04879885095134706im … 0.09273337952145072 - 0.046294776615144174im -0.003104981547380115 - 0.04224238022747917im; … ; 0.0158564088522061 + 0.005133931478782364im -0.03883942015356226 - 0.012460392824415797im … -0.010204571055431643 - 0.010303525505726233im -0.012171507335961024 + 0.03394182943558857im; 0.015336565058874308 + 0.003935281929121084im -0.03972041536647458 + 0.037558795043045365im … -0.05257609030864346 + 0.04848839242366907im 0.007379606184990752 + 0.062428923386432855im;;; -0.04639257907012481 + 0.012960819118715012im -0.007037764503179972 + 0.0034276088056053935im … 0.09298631843974739 - 0.017165814633580977im -0.00010302002661992332 - 0.03884327403579711im; 0.024343016110617892 + 0.07110444017345398im 0.000294905892524136 - 0.03182092389608433im … 0.04351888443231379 - 0.06222780262023756im -0.02740224651382018 + 0.043667974099622656im; … ; -0.04598995942958861 + 0.0004418854119036999im -0.048885446261335244 + 0.06181020429420404im … -0.0014086887940297915 + 0.017219461351566923im 0.0033645286902779133 + 0.006826105208838938im; -0.014187865968044985 + 0.015961122511792207im 0.009511266987801428 + 0.03957345255603012im … 0.03022671403207488 + 0.04379844004338654im 0.029730479607974668 + 0.015822160969981965im;;; … ;;; 0.11076117271680402 - 0.05391693352978348im 0.035854046154700676 - 0.04844223032874764im … -0.01028937486180144 - 0.00977221604512002im 0.06762168816639635 + 0.0341863420439114im; 0.013816214175738403 - 0.013135359391989138im 0.0189598047916539 + 0.02365061453991154im … -0.09454372239994416 + 0.006868762328031507im -0.014543129112156099 + 0.04588465064210803im; … ; 0.08405821832965764 + 0.06256252891260158im 0.14700116428972337 + 0.023043444823208026im … 0.04631102128347804 - 0.06062073972718128im 0.02906089422248703 - 0.032602384384417704im; 0.2072121531466719 + 0.03640399062892344im 0.15494835629988393 - 0.0802573435394254im … -0.003003455360100573 + 0.001116753860934511im 0.06140631586744203 + 0.07728594246905315im;;; 0.009836643791713614 + 0.0029179060836599068im 0.08100488252294102 + 0.07791376836283678im … -0.06736123286359222 - 0.024676806530968907im -0.00022621615844465784 + 0.0005755553340448111im; 0.019044268932949755 + 0.045230323275444004im 0.09681663411401643 + 0.013310703173870272im … -0.10480559405282118 + 0.10052604756429376im 6.497983114373516e-5 + 0.0441184410493429im; … ; 0.17878033438209262 + 0.028436414442916377im 0.14717097457462325 - 0.060794849086493276im … -0.05132648689147655 + 0.04355060053937111im 0.06432757670085294 + 0.07060134848185984im; 0.1475329131654468 - 0.08392498241857796im 0.05288392556808709 - 0.05493727210870876im … 0.025887790587054003 + 0.04831717538269423im 0.11640188480483984 + 0.011175571558047942im;;; 0.059399480394355275 + 0.08525250965842235im 0.15135656290931399 + 0.015980745088918304im … -0.07823125585037836 - 0.008819422636489174im -0.036813716348025535 + 0.024359312219448974im; 0.014770243795777918 + 0.01667255275209499im 0.04102294189606636 - 0.03836015023398835im … -0.004522252719466664 + 0.047303093233473446im -0.008624854860205035 + 0.014177627990503806im; … ; 0.06673385601525776 - 0.020198127807718527im 0.0594809947380632 - 0.015687923532401928im … 0.037633938703219655 + 0.07370863820815911im 0.055079574251113025 - 0.011484295616714853im; 0.004694088043814149 + 0.02183123767182573im 0.07511337395618664 + 0.049771792461470885im … 0.0338849153809393 - 0.045386007070296656im -0.025453897244716073 - 0.03163758121147377im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488508), converged = true, ρ = [7.589784534784048e-5 0.0011262712729214629 … 0.0066970375503164585 0.0011262712729214798; 0.001126271272921473 0.005274334457585181 … 0.005274334457585211 0.0011262712729214798; … ; 0.006697037550316458 0.005274334457585213 … 0.02324475419071937 0.012258986825358479; 0.0011262712729214832 0.0011262712729214663 … 0.012258986825358479 0.003770008630144623;;; 0.0011262712729214665 0.0052743344575851775 … 0.005274334457585214 0.0011262712729214728; 0.0052743344575851905 0.01462006530481397 … 0.005274334457585203 0.002588080875043498; … ; 0.005274334457585214 0.005274334457585201 … 0.01810768664609968 0.008922003044972385; 0.0011262712729214772 0.0025880808750434886 … 0.008922003044972385 0.0025880808750435125;;; 0.006697037550316421 0.01641210910165182 … 0.006697037550316454 0.0037700086301446023; 0.016412109101651837 0.0312778393155921 … 0.008922003044972353 0.008922003044972338; … ; 0.006697037550316456 0.008922003044972355 … 0.016476756359498666 0.008922003044972383; 0.003770008630144608 0.00892200304497233 … 0.008922003044972381 0.0037700086301446166;;; … ;;; 0.019853839853311784 0.016412109101651827 … 0.03715667363479313 0.027190800686141933; 0.016412109101651844 0.01462006530481398 … 0.03230127212585129 0.022322100931550654; … ; 0.03715667363479313 0.03230127212585129 … 0.0462969807003285 0.04263658273033782; 0.027190800686141936 0.022322100931550647 … 0.04263658273033781 0.03477222914117401;;; 0.006697037550316429 0.0052743344575851775 … 0.023244754190719353 0.012258986825358446; 0.005274334457585194 0.005274334457585184 … 0.018107686646099644 0.008922003044972348; … ; 0.02324475419071935 0.018107686646099644 … 0.040371110334486725 0.031491603810627995; 0.012258986825358446 0.008922003044972336 … 0.031491603810627995 0.020047163432497142;;; 0.0011262712729214694 0.001126271272921466 … 0.012258986825358467 0.0037700086301446114; 0.0011262712729214793 0.0025880808750434908 … 0.008922003044972362 0.0025880808750435; … ; 0.012258986825358467 0.00892200304497236 … 0.031491603810627995 0.020047163432497166; 0.003770008630144614 0.0025880808750434895 … 0.020047163432497166 0.008952603496959904;;;;], eigenvalues = [[-0.17836835653890462, 0.2624919449918711, 0.26249194499187145, 0.2624919449918717, 0.3546921481681438, 0.354692148168144, 0.3546921481689041], [-0.1275503761786868, 0.06475320594721523, 0.2254516651745281, 0.2254516651745285, 0.32197764961216613, 0.3892227690850079, 0.38922276908500925], [-0.10818729216457279, 0.07755003473512753, 0.17278328011490432, 0.1727832801149046, 0.2843518536199193, 0.3305476484330187, 0.5267232426449542], [-0.05777325374370517, 0.012724782206137826, 0.09766073750123885, 0.18417825332996396, 0.31522841795996936, 0.47203121939516757, 0.4979135177880758]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993058955, n_iter = 9, ψ = Matrix{ComplexF64}[[-0.7663883880548147 + 0.5606714955106251im 9.728840268424076e-13 + 1.8802199268966866e-12im … -1.476454857205722e-12 + 6.139359398040439e-15im 3.355114093932864e-8 + 1.3029728990374881e-8im; -0.015219919248789297 + 0.09818223490336549im -0.0994645149478173 + 0.3516663422512052im … 0.2397586297820166 + 0.1397046060849169im 0.2582806162797256 + 0.4125390076957275im; … ; 0.009489712063564732 - 0.006942447376210403im -0.05424875860658581 + 0.0261938708684168im … -0.012611263333928306 - 0.01209761268033289im 0.006835898650849567 - 0.0980292751267887im; -0.015219919249541216 + 0.09818223490303388im -0.08135032888362943 + 0.16678953693677417im … 0.09319290875287778 + 0.14275142935143667im -0.2826520434585771 - 0.20949006693760747im], [-0.6123016358816997 + 0.6883061115803822im -0.20195377570736486 - 0.02088550104752836im … -4.1664291625007244e-11 + 1.1412921795308076e-10im -1.4849957182953068e-10 + 5.928172533475528e-10im; 0.003649123694846838 + 0.06244472454139524im 0.006992101073071801 - 0.005681438640482964im … -4.730465825221481e-10 - 1.7861583771783188e-10im 1.2909805434770814e-10 + 1.032058418628567e-9im; … ; 0.003284886894206561 - 0.0036926370806860185im 0.08409016405852128 + 0.008696372243610154im … 0.0012504867172472777 - 0.03319297337380561im -0.021923188600140735 + 0.09759555908591425im; 0.006820465367565657 + 0.11671352268112065im -0.07770264415010908 + 0.06313736033287615im … -0.09987571637594542 - 0.10769559177054587im 0.2366075016795826 + 0.3737035270829773im], [0.906057805089699 - 0.1888674566911988im 2.1011159716121044e-13 + 3.2321107187344574e-14im … 4.259706014670945e-12 - 2.8622150700103257e-10im 3.349327084241479e-9 - 9.152075910726264e-9im; 0.03755188416985435 - 0.05732997759417065im -0.010576915508526573 + 0.05111374276180751im … 0.022115765225687645 + 0.013596109866081422im -0.00468082428784517 + 0.0018599828964687962im; … ; -0.010371936688777533 + 0.0021620268520961493im 1.2115679763396411e-12 - 9.591137965473846e-13im … -6.66901856920209e-10 - 7.083959519287957e-10im 0.010281274233660638 + 0.053364218158841466im; 0.08780141972389097 - 0.13404529591160969im 0.05942128786288238 - 0.287157859939861im … 0.3169844085428959 + 0.19487254221307782im 0.12811217276899245 + 0.08841562175246882im], [-0.55705113873925 + 0.5732481117825985im 1.3983965535370966e-13 + 1.2676243166911627e-13im … -0.15021169852390576 + 0.10212952628923336im -1.578838962702686e-6 - 4.126260998769373e-6im; 0.005614668731579138 + 0.3918173995834919im -0.5519652811910364 + 0.2840625723870257im … 0.034063308153992986 - 0.17878004794469657im 4.114941272574131e-6 + 6.018554486874928e-8im; … ; 0.009234771520440043 - 0.00950328429222584im 0.00024176831122072048 + 7.747395609840827e-5im … 0.010790873739040453 - 0.007338028260484293im 0.030486871414176355 - 0.03458038237694235im; 0.0009613087588155952 + 0.0670845451967163im 0.004724392272499336 - 0.002431354050487179im … 0.02681311661227728 - 0.1408617673545179im -0.02957269696664933 - 0.47031294834221865im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653890462, 0.2624919449918711, 0.26249194499187145, 0.2624919449918717, 0.3546921481681438, 0.354692148168144, 0.3546921481689041], [-0.1275503761786868, 0.06475320594721523, 0.2254516651745281, 0.2254516651745285, 0.32197764961216613, 0.3892227690850079, 0.38922276908500925], [-0.10818729216457279, 0.07755003473512753, 0.17278328011490432, 0.1727832801149046, 0.2843518536199193, 0.3305476484330187, 0.5267232426449542], [-0.05777325374370517, 0.012724782206137826, 0.09766073750123885, 0.18417825332996396, 0.31522841795996936, 0.47203121939516757, 0.4979135177880758]], X = [[-0.7663883880548147 + 0.5606714955106251im 9.728840268424076e-13 + 1.8802199268966866e-12im … -1.476454857205722e-12 + 6.139359398040439e-15im 3.355114093932864e-8 + 1.3029728990374881e-8im; -0.015219919248789297 + 0.09818223490336549im -0.0994645149478173 + 0.3516663422512052im … 0.2397586297820166 + 0.1397046060849169im 0.2582806162797256 + 0.4125390076957275im; … ; 0.009489712063564732 - 0.006942447376210403im -0.05424875860658581 + 0.0261938708684168im … -0.012611263333928306 - 0.01209761268033289im 0.006835898650849567 - 0.0980292751267887im; -0.015219919249541216 + 0.09818223490303388im -0.08135032888362943 + 0.16678953693677417im … 0.09319290875287778 + 0.14275142935143667im -0.2826520434585771 - 0.20949006693760747im], [-0.6123016358816997 + 0.6883061115803822im -0.20195377570736486 - 0.02088550104752836im … -4.1664291625007244e-11 + 1.1412921795308076e-10im -1.4849957182953068e-10 + 5.928172533475528e-10im; 0.003649123694846838 + 0.06244472454139524im 0.006992101073071801 - 0.005681438640482964im … -4.730465825221481e-10 - 1.7861583771783188e-10im 1.2909805434770814e-10 + 1.032058418628567e-9im; … ; 0.003284886894206561 - 0.0036926370806860185im 0.08409016405852128 + 0.008696372243610154im … 0.0012504867172472777 - 0.03319297337380561im -0.021923188600140735 + 0.09759555908591425im; 0.006820465367565657 + 0.11671352268112065im -0.07770264415010908 + 0.06313736033287615im … -0.09987571637594542 - 0.10769559177054587im 0.2366075016795826 + 0.3737035270829773im], [0.906057805089699 - 0.1888674566911988im 2.1011159716121044e-13 + 3.2321107187344574e-14im … 4.259706014670945e-12 - 2.8622150700103257e-10im 3.349327084241479e-9 - 9.152075910726264e-9im; 0.03755188416985435 - 0.05732997759417065im -0.010576915508526573 + 0.05111374276180751im … 0.022115765225687645 + 0.013596109866081422im -0.00468082428784517 + 0.0018599828964687962im; … ; -0.010371936688777533 + 0.0021620268520961493im 1.2115679763396411e-12 - 9.591137965473846e-13im … -6.66901856920209e-10 - 7.083959519287957e-10im 0.010281274233660638 + 0.053364218158841466im; 0.08780141972389097 - 0.13404529591160969im 0.05942128786288238 - 0.287157859939861im … 0.3169844085428959 + 0.19487254221307782im 0.12811217276899245 + 0.08841562175246882im], [-0.55705113873925 + 0.5732481117825985im 1.3983965535370966e-13 + 1.2676243166911627e-13im … -0.15021169852390576 + 0.10212952628923336im -1.578838962702686e-6 - 4.126260998769373e-6im; 0.005614668731579138 + 0.3918173995834919im -0.5519652811910364 + 0.2840625723870257im … 0.034063308153992986 - 0.17878004794469657im 4.114941272574131e-6 + 6.018554486874928e-8im; … ; 0.009234771520440043 - 0.00950328429222584im 0.00024176831122072048 + 7.747395609840827e-5im … 0.010790873739040453 - 0.007338028260484293im 0.030486871414176355 - 0.03458038237694235im; 0.0009613087588155952 + 0.0670845451967163im 0.004724392272499336 - 0.002431354050487179im … 0.02681311661227728 - 0.1408617673545179im -0.02957269696664933 - 0.47031294834221865im]], residual_norms = [[0.0, 0.0, 0.0, 5.556025973372231e-11, 7.637613531967052e-12, 2.6513123146294278e-11, 8.049943980811355e-7], [0.0, 0.0, 5.3480187191158664e-11, 5.483393797668655e-11, 4.20859676291443e-9, 6.57083794291859e-8, 6.819632631711872e-8], [0.0, 3.1934538189532083e-11, 1.087985749427051e-11, 2.368192761350349e-11, 7.649955755802633e-10, 1.4757402579573978e-8, 2.434743529374834e-6], [0.0, 0.0, 2.4037471977202366e-11, 4.0621538931260995e-11, 3.803356127492807e-9, 4.930652734616587e-5, 1.4734086326999787e-5]], n_iter = [5, 3, 3, 3], converged = 1, n_matvec = 114)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21069722680790873, 0.02761969382249031, 0.002310780408576253, 0.00025802237742373474, 9.338284433674509e-6, 8.848854523382876e-7, 3.8903226714391955e-8, 2.670674707179404e-9, 8.310969957899985e-11], history_Etot = [-7.905258525115058, -7.910544321484691, -7.910593449877291, -7.910594393267505, -7.910594396445731, -7.91059439648844, -7.910594396488504, -7.910594396488503, -7.910594396488508], occupation_threshold = 1.0e-6, runtime_ns = 0x000000009da1f978)