Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#781"{DFTK.var"#anderson#780#782"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668722608 -11.100308396742223 … -8.289845772412372 -11.100308396742284; -11.100308396742223 -9.130057825947679 … -9.130057795896388 -11.100308356759246; … ; -8.289845772412372 -9.130057795896388 … -4.149589921643205 -6.287956198199239; -11.100308396742282 -11.100308356759248 … -6.28795619819924 -9.111848223577415;;; -11.100308396742225 -9.130057825947677 … -9.13005779589639 -11.100308356759248; -9.130057825947679 -6.903159481981963 … -9.130057827297362 -10.053883826552092; … ; -9.130057795896388 -9.130057827297362 … -5.2943536692142965 -7.547399206521557; -11.100308356759246 -10.053883826552092 … -7.547399206521558 -10.053883826552196;;; -8.28984577241267 -6.307621931516577 … -8.289845781011625 -9.111848193526084; -6.307621931516579 -4.516655665815526 … -7.547399237611389 -7.547399206521789; … ; -8.289845781011623 -7.547399237611388 … -5.768969083581122 -7.54739923761146; -9.111848193526082 -7.5473992065217885 … -7.547399237611461 -9.111848224927321;;; … ;;; -5.301031718249665 -6.307621955788784 … -2.549703573275923 -3.84958217938772; -6.307621955788785 -6.903159495208792 … -3.329060698546158 -4.8784193586305244; … ; -2.549703573275922 -3.329060698546159 … -1.256798470902426 -1.8141947460409882; -3.849582179387719 -4.878419358630526 … -1.8141947460409877 -2.714767335322538;;; -8.289845772412374 -9.130057795896386 … -4.149589921643205 -6.287956198199238; -9.130057795896388 -9.130057827297358 … -5.294353669214296 -7.547399206521556; … ; -4.149589921643205 -5.2943536692142965 … -1.9094492399152498 -2.894612367852207; -6.287956198199238 -7.547399206521557 … -2.894612367852207 -4.485542759371974;;; -11.100308396742284 -11.100308356759248 … -6.28795619819924 -9.111848223577413; -11.100308356759246 -10.05388382655209 … -7.5473992065215585 -10.053883826552196; … ; -6.287956198199238 -7.5473992065215585 … -2.894612367852207 -4.485542759371974; -9.111848223577415 -10.053883826552196 … -4.485542759371975 -6.87110450013523])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668722608 -11.100308396742223 … -8.289845772412372 -11.100308396742284; -11.100308396742223 -9.130057825947679 … -9.130057795896388 -11.100308356759246; … ; -8.289845772412372 -9.130057795896388 … -4.149589921643205 -6.287956198199239; -11.100308396742282 -11.100308356759248 … -6.28795619819924 -9.111848223577415;;; -11.100308396742225 -9.130057825947677 … -9.13005779589639 -11.100308356759248; -9.130057825947679 -6.903159481981963 … -9.130057827297362 -10.053883826552092; … ; -9.130057795896388 -9.130057827297362 … -5.2943536692142965 -7.547399206521557; -11.100308356759246 -10.053883826552092 … -7.547399206521558 -10.053883826552196;;; -8.28984577241267 -6.307621931516577 … -8.289845781011625 -9.111848193526084; -6.307621931516579 -4.516655665815526 … -7.547399237611389 -7.547399206521789; … ; -8.289845781011623 -7.547399237611388 … -5.768969083581122 -7.54739923761146; -9.111848193526082 -7.5473992065217885 … -7.547399237611461 -9.111848224927321;;; … ;;; -5.301031718249665 -6.307621955788784 … -2.549703573275923 -3.84958217938772; -6.307621955788785 -6.903159495208792 … -3.329060698546158 -4.8784193586305244; … ; -2.549703573275922 -3.329060698546159 … -1.256798470902426 -1.8141947460409882; -3.849582179387719 -4.878419358630526 … -1.8141947460409877 -2.714767335322538;;; -8.289845772412374 -9.130057795896386 … -4.149589921643205 -6.287956198199238; -9.130057795896388 -9.130057827297358 … -5.294353669214296 -7.547399206521556; … ; -4.149589921643205 -5.2943536692142965 … -1.9094492399152498 -2.894612367852207; -6.287956198199238 -7.547399206521557 … -2.894612367852207 -4.485542759371974;;; -11.100308396742284 -11.100308356759248 … -6.28795619819924 -9.111848223577413; -11.100308356759246 -10.05388382655209 … -7.5473992065215585 -10.053883826552196; … ; -6.287956198199238 -7.5473992065215585 … -2.894612367852207 -4.485542759371974; -9.111848223577415 -10.053883826552196 … -4.485542759371975 -6.87110450013523]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.015764142825817958 - 0.0709070474872243im -0.04160640136955601 - 0.0034223768947953146im … -0.09982909835109327 + 0.01719640291915934im 0.02774514350036395 + 0.05245492121825836im; -0.051790780715942515 - 0.04071130253376386im 0.0025905067821940598 + 0.01921382735087431im … -0.023910953326053794 + 0.05907255669125744im 0.030630387904204984 - 0.05301035735532752im; … ; -0.061749884364569935 + 0.03062367554844759im -0.004957398407399563 - 0.05765060190832694im … 0.10992571223956332 - 0.051015921749889864im -0.09663745413505856 - 0.11521695872705699im; 0.05826488649595572 - 0.01713582077632637im -0.055908243978334174 - 0.09207663137976109im … -0.012135547057317203 - 0.09001837316645592im -0.06630437925983179 + 0.0599232538032559im;;; -0.10102340240934142 - 0.058024003570517874im -0.05133778713586445 + 0.015954953469708107im … -0.03548360849479907 + 0.12330203065509747im 0.03607577118755214 - 0.03444831346369548im; -0.09258798021299497 - 0.003411013072228776im 0.012593820440066114 + 0.03197484566986873im … 0.0729933460546483 - 0.01835293168261512im -0.029738989167393686 - 0.11325913023069067im; … ; -0.0018279146045866168 - 0.033972539914663424im -0.06684434472558212 - 0.11588026770321913im … -0.06409948855563173 - 0.05928702642186566im -0.08926976201539376 + 0.0312156688719im; -0.03612047837358871 - 0.12583937999150308im -0.13202847656739533 - 0.04731822040935861im … -0.1188874287555852 + 0.04073976290231912im -0.003208454291190519 + 0.03299602240734642im;;; -0.11879029689627793 + 0.01929431295747084im -0.042507442714112886 - 0.013399504302439347im … 0.012851437164891535 + 0.008605283823739079im -0.10598733257765929 - 0.05068248148713563im; -0.052649670812150426 + 0.06401431336934606im 0.015279678473852781 - 0.037284878673835425im … -0.07662267828162184 - 0.09917828182526327im -0.17359451043802196 + 0.004331549895239952im; … ; -0.06725880332582945 - 0.07249775096218576im -0.11186633109752073 - 0.04673859576945333im … -0.09307712519618394 + 0.029087378024027312im -0.03581153448579711 + 0.011373915384782458im; -0.13637681020708076 - 0.030950199131638476im -0.08961526059262563 + 0.0029568738707868164im … -0.04761246167849747 + 0.08317808212171493im -0.047462400171663595 - 0.034598821594587735im;;; … ;;; -0.10749356489810948 + 0.05227488722999832im -0.04303309838877663 - 0.02079601095338557im … -0.03366303930698656 + 0.03580540563285849im -0.103286259947808 - 0.009825218601715216im; -0.03394279073065826 + 0.04196569596940673im -0.05069306178344801 - 0.027316286296687753im … -0.028491458138390297 - 0.03071175577275563im -0.1017556576035779 + 0.03219745621026787im; … ; -0.06142140136415704 - 0.03511133933158394im -0.03371118935981873 - 0.034950580597248364im … -0.0035468606085378995 - 0.11600519195304701im -0.06848005401597984 - 0.02412998379293966im; -0.10287689089741328 - 0.001749106540297308im -0.03977984765773533 - 0.02371337526162543im … -0.10390924542187062 + 0.01182628689425994im -0.06583379072874991 + 0.016788025785688953im;;; -0.05349451509993131 + 0.023593265171722673im -0.10776606745064318 - 0.06760122498049677im … 0.014601709679135277 - 0.03156699955757679im -0.10007479393375258 - 0.014125016711104978im; -0.03479315432575002 - 0.04457620320995968im -0.13932552316837207 - 0.009064389564701559im … -0.08313793045319659 - 0.026122205005821478im -0.0406937696143341 + 0.04504128565096151im; … ; -0.01855291666681918 - 0.07087284100180728im -0.02698514943195582 - 0.0775395079844479im … -0.07381648318305961 + 0.053619355770333284im 0.06751029628181968 + 0.030820635183795516im; -0.05796458549842236 - 0.01611198257109142im -0.0433354441630603 - 0.09283155936488303im … 0.03384123726758063 + 0.10299298858674846im 0.012326632948666628 - 0.043870795627884755im;;; -0.008902404999502858 - 0.02148698906481622im -0.1217811101075344 - 0.0061604291647094946im … -0.017998031772698646 - 0.06386115713507733im -0.06049681731288752 + 0.05089849198661618im; -0.06349189773401065 - 0.06764654879129056im -0.0839834134911502 + 0.060138452034065606im … -0.06630527349144 + 0.019489360609028852im 0.01800334182950118 - 0.015522348882408825im; … ; -0.05956245955368222 - 0.1057692073211477im -0.04566750276344489 - 0.07173900044803705im … 0.12643351069867603 + 0.13254183457394314im 0.11229147185704937 - 0.14089530815809817im; -0.026084503478621433 + 0.012857708368027146im -0.07358098180525688 - 0.09813049774267689im … 0.13320949995767248 - 0.01995214096461466im -0.040444620617892904 - 0.0994670349393463im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668722608 -11.100308396742223 … -8.289845772412372 -11.100308396742284; -11.100308396742223 -9.130057825947679 … -9.130057795896388 -11.100308356759246; … ; -8.289845772412372 -9.130057795896388 … -4.149589921643205 -6.287956198199239; -11.100308396742282 -11.100308356759248 … -6.28795619819924 -9.111848223577415;;; -11.100308396742225 -9.130057825947677 … -9.13005779589639 -11.100308356759248; -9.130057825947679 -6.903159481981963 … -9.130057827297362 -10.053883826552092; … ; -9.130057795896388 -9.130057827297362 … -5.2943536692142965 -7.547399206521557; -11.100308356759246 -10.053883826552092 … -7.547399206521558 -10.053883826552196;;; -8.28984577241267 -6.307621931516577 … -8.289845781011625 -9.111848193526084; -6.307621931516579 -4.516655665815526 … -7.547399237611389 -7.547399206521789; … ; -8.289845781011623 -7.547399237611388 … -5.768969083581122 -7.54739923761146; -9.111848193526082 -7.5473992065217885 … -7.547399237611461 -9.111848224927321;;; … ;;; -5.301031718249665 -6.307621955788784 … -2.549703573275923 -3.84958217938772; -6.307621955788785 -6.903159495208792 … -3.329060698546158 -4.8784193586305244; … ; -2.549703573275922 -3.329060698546159 … -1.256798470902426 -1.8141947460409882; -3.849582179387719 -4.878419358630526 … -1.8141947460409877 -2.714767335322538;;; -8.289845772412374 -9.130057795896386 … -4.149589921643205 -6.287956198199238; -9.130057795896388 -9.130057827297358 … -5.294353669214296 -7.547399206521556; … ; -4.149589921643205 -5.2943536692142965 … -1.9094492399152498 -2.894612367852207; -6.287956198199238 -7.547399206521557 … -2.894612367852207 -4.485542759371974;;; -11.100308396742284 -11.100308356759248 … -6.28795619819924 -9.111848223577413; -11.100308356759246 -10.05388382655209 … -7.5473992065215585 -10.053883826552196; … ; -6.287956198199238 -7.5473992065215585 … -2.894612367852207 -4.485542759371974; -9.111848223577415 -10.053883826552196 … -4.485542759371975 -6.87110450013523])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668722608 -11.100308396742223 … -8.289845772412372 -11.100308396742284; -11.100308396742223 -9.130057825947679 … -9.130057795896388 -11.100308356759246; … ; -8.289845772412372 -9.130057795896388 … -4.149589921643205 -6.287956198199239; -11.100308396742282 -11.100308356759248 … -6.28795619819924 -9.111848223577415;;; -11.100308396742225 -9.130057825947677 … -9.13005779589639 -11.100308356759248; -9.130057825947679 -6.903159481981963 … -9.130057827297362 -10.053883826552092; … ; -9.130057795896388 -9.130057827297362 … -5.2943536692142965 -7.547399206521557; -11.100308356759246 -10.053883826552092 … -7.547399206521558 -10.053883826552196;;; -8.28984577241267 -6.307621931516577 … -8.289845781011625 -9.111848193526084; -6.307621931516579 -4.516655665815526 … -7.547399237611389 -7.547399206521789; … ; -8.289845781011623 -7.547399237611388 … -5.768969083581122 -7.54739923761146; -9.111848193526082 -7.5473992065217885 … -7.547399237611461 -9.111848224927321;;; … ;;; -5.301031718249665 -6.307621955788784 … -2.549703573275923 -3.84958217938772; -6.307621955788785 -6.903159495208792 … -3.329060698546158 -4.8784193586305244; … ; -2.549703573275922 -3.329060698546159 … -1.256798470902426 -1.8141947460409882; -3.849582179387719 -4.878419358630526 … -1.8141947460409877 -2.714767335322538;;; -8.289845772412374 -9.130057795896386 … -4.149589921643205 -6.287956198199238; -9.130057795896388 -9.130057827297358 … -5.294353669214296 -7.547399206521556; … ; -4.149589921643205 -5.2943536692142965 … -1.9094492399152498 -2.894612367852207; -6.287956198199238 -7.547399206521557 … -2.894612367852207 -4.485542759371974;;; -11.100308396742284 -11.100308356759248 … -6.28795619819924 -9.111848223577413; -11.100308356759246 -10.05388382655209 … -7.5473992065215585 -10.053883826552196; … ; -6.287956198199238 -7.5473992065215585 … -2.894612367852207 -4.485542759371974; -9.111848223577415 -10.053883826552196 … -4.485542759371975 -6.87110450013523]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.015764142825817958 - 0.0709070474872243im -0.04160640136955601 - 0.0034223768947953146im … -0.09982909835109327 + 0.01719640291915934im 0.02774514350036395 + 0.05245492121825836im; -0.051790780715942515 - 0.04071130253376386im 0.0025905067821940598 + 0.01921382735087431im … -0.023910953326053794 + 0.05907255669125744im 0.030630387904204984 - 0.05301035735532752im; … ; -0.061749884364569935 + 0.03062367554844759im -0.004957398407399563 - 0.05765060190832694im … 0.10992571223956332 - 0.051015921749889864im -0.09663745413505856 - 0.11521695872705699im; 0.05826488649595572 - 0.01713582077632637im -0.055908243978334174 - 0.09207663137976109im … -0.012135547057317203 - 0.09001837316645592im -0.06630437925983179 + 0.0599232538032559im;;; -0.10102340240934142 - 0.058024003570517874im -0.05133778713586445 + 0.015954953469708107im … -0.03548360849479907 + 0.12330203065509747im 0.03607577118755214 - 0.03444831346369548im; -0.09258798021299497 - 0.003411013072228776im 0.012593820440066114 + 0.03197484566986873im … 0.0729933460546483 - 0.01835293168261512im -0.029738989167393686 - 0.11325913023069067im; … ; -0.0018279146045866168 - 0.033972539914663424im -0.06684434472558212 - 0.11588026770321913im … -0.06409948855563173 - 0.05928702642186566im -0.08926976201539376 + 0.0312156688719im; -0.03612047837358871 - 0.12583937999150308im -0.13202847656739533 - 0.04731822040935861im … -0.1188874287555852 + 0.04073976290231912im -0.003208454291190519 + 0.03299602240734642im;;; -0.11879029689627793 + 0.01929431295747084im -0.042507442714112886 - 0.013399504302439347im … 0.012851437164891535 + 0.008605283823739079im -0.10598733257765929 - 0.05068248148713563im; -0.052649670812150426 + 0.06401431336934606im 0.015279678473852781 - 0.037284878673835425im … -0.07662267828162184 - 0.09917828182526327im -0.17359451043802196 + 0.004331549895239952im; … ; -0.06725880332582945 - 0.07249775096218576im -0.11186633109752073 - 0.04673859576945333im … -0.09307712519618394 + 0.029087378024027312im -0.03581153448579711 + 0.011373915384782458im; -0.13637681020708076 - 0.030950199131638476im -0.08961526059262563 + 0.0029568738707868164im … -0.04761246167849747 + 0.08317808212171493im -0.047462400171663595 - 0.034598821594587735im;;; … ;;; -0.10749356489810948 + 0.05227488722999832im -0.04303309838877663 - 0.02079601095338557im … -0.03366303930698656 + 0.03580540563285849im -0.103286259947808 - 0.009825218601715216im; -0.03394279073065826 + 0.04196569596940673im -0.05069306178344801 - 0.027316286296687753im … -0.028491458138390297 - 0.03071175577275563im -0.1017556576035779 + 0.03219745621026787im; … ; -0.06142140136415704 - 0.03511133933158394im -0.03371118935981873 - 0.034950580597248364im … -0.0035468606085378995 - 0.11600519195304701im -0.06848005401597984 - 0.02412998379293966im; -0.10287689089741328 - 0.001749106540297308im -0.03977984765773533 - 0.02371337526162543im … -0.10390924542187062 + 0.01182628689425994im -0.06583379072874991 + 0.016788025785688953im;;; -0.05349451509993131 + 0.023593265171722673im -0.10776606745064318 - 0.06760122498049677im … 0.014601709679135277 - 0.03156699955757679im -0.10007479393375258 - 0.014125016711104978im; -0.03479315432575002 - 0.04457620320995968im -0.13932552316837207 - 0.009064389564701559im … -0.08313793045319659 - 0.026122205005821478im -0.0406937696143341 + 0.04504128565096151im; … ; -0.01855291666681918 - 0.07087284100180728im -0.02698514943195582 - 0.0775395079844479im … -0.07381648318305961 + 0.053619355770333284im 0.06751029628181968 + 0.030820635183795516im; -0.05796458549842236 - 0.01611198257109142im -0.0433354441630603 - 0.09283155936488303im … 0.03384123726758063 + 0.10299298858674846im 0.012326632948666628 - 0.043870795627884755im;;; -0.008902404999502858 - 0.02148698906481622im -0.1217811101075344 - 0.0061604291647094946im … -0.017998031772698646 - 0.06386115713507733im -0.06049681731288752 + 0.05089849198661618im; -0.06349189773401065 - 0.06764654879129056im -0.0839834134911502 + 0.060138452034065606im … -0.06630527349144 + 0.019489360609028852im 0.01800334182950118 - 0.015522348882408825im; … ; -0.05956245955368222 - 0.1057692073211477im -0.04566750276344489 - 0.07173900044803705im … 0.12643351069867603 + 0.13254183457394314im 0.11229147185704937 - 0.14089530815809817im; -0.026084503478621433 + 0.012857708368027146im -0.07358098180525688 - 0.09813049774267689im … 0.13320949995767248 - 0.01995214096461466im -0.040444620617892904 - 0.0994670349393463im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668722608 -11.100308396742223 … -8.289845772412372 -11.100308396742284; -11.100308396742223 -9.130057825947679 … -9.130057795896388 -11.100308356759246; … ; -8.289845772412372 -9.130057795896388 … -4.149589921643205 -6.287956198199239; -11.100308396742282 -11.100308356759248 … -6.28795619819924 -9.111848223577415;;; -11.100308396742225 -9.130057825947677 … -9.13005779589639 -11.100308356759248; -9.130057825947679 -6.903159481981963 … -9.130057827297362 -10.053883826552092; … ; -9.130057795896388 -9.130057827297362 … -5.2943536692142965 -7.547399206521557; -11.100308356759246 -10.053883826552092 … -7.547399206521558 -10.053883826552196;;; -8.28984577241267 -6.307621931516577 … -8.289845781011625 -9.111848193526084; -6.307621931516579 -4.516655665815526 … -7.547399237611389 -7.547399206521789; … ; -8.289845781011623 -7.547399237611388 … -5.768969083581122 -7.54739923761146; -9.111848193526082 -7.5473992065217885 … -7.547399237611461 -9.111848224927321;;; … ;;; -5.301031718249665 -6.307621955788784 … -2.549703573275923 -3.84958217938772; -6.307621955788785 -6.903159495208792 … -3.329060698546158 -4.8784193586305244; … ; -2.549703573275922 -3.329060698546159 … -1.256798470902426 -1.8141947460409882; -3.849582179387719 -4.878419358630526 … -1.8141947460409877 -2.714767335322538;;; -8.289845772412374 -9.130057795896386 … -4.149589921643205 -6.287956198199238; -9.130057795896388 -9.130057827297358 … -5.294353669214296 -7.547399206521556; … ; -4.149589921643205 -5.2943536692142965 … -1.9094492399152498 -2.894612367852207; -6.287956198199238 -7.547399206521557 … -2.894612367852207 -4.485542759371974;;; -11.100308396742284 -11.100308356759248 … -6.28795619819924 -9.111848223577413; -11.100308356759246 -10.05388382655209 … -7.5473992065215585 -10.053883826552196; … ; -6.287956198199238 -7.5473992065215585 … -2.894612367852207 -4.485542759371974; -9.111848223577415 -10.053883826552196 … -4.485542759371975 -6.87110450013523])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668722608 -11.100308396742223 … -8.289845772412372 -11.100308396742284; -11.100308396742223 -9.130057825947679 … -9.130057795896388 -11.100308356759246; … ; -8.289845772412372 -9.130057795896388 … -4.149589921643205 -6.287956198199239; -11.100308396742282 -11.100308356759248 … -6.28795619819924 -9.111848223577415;;; -11.100308396742225 -9.130057825947677 … -9.13005779589639 -11.100308356759248; -9.130057825947679 -6.903159481981963 … -9.130057827297362 -10.053883826552092; … ; -9.130057795896388 -9.130057827297362 … -5.2943536692142965 -7.547399206521557; -11.100308356759246 -10.053883826552092 … -7.547399206521558 -10.053883826552196;;; -8.28984577241267 -6.307621931516577 … -8.289845781011625 -9.111848193526084; -6.307621931516579 -4.516655665815526 … -7.547399237611389 -7.547399206521789; … ; -8.289845781011623 -7.547399237611388 … -5.768969083581122 -7.54739923761146; -9.111848193526082 -7.5473992065217885 … -7.547399237611461 -9.111848224927321;;; … ;;; -5.301031718249665 -6.307621955788784 … -2.549703573275923 -3.84958217938772; -6.307621955788785 -6.903159495208792 … -3.329060698546158 -4.8784193586305244; … ; -2.549703573275922 -3.329060698546159 … -1.256798470902426 -1.8141947460409882; -3.849582179387719 -4.878419358630526 … -1.8141947460409877 -2.714767335322538;;; -8.289845772412374 -9.130057795896386 … -4.149589921643205 -6.287956198199238; -9.130057795896388 -9.130057827297358 … -5.294353669214296 -7.547399206521556; … ; -4.149589921643205 -5.2943536692142965 … -1.9094492399152498 -2.894612367852207; -6.287956198199238 -7.547399206521557 … -2.894612367852207 -4.485542759371974;;; -11.100308396742284 -11.100308356759248 … -6.28795619819924 -9.111848223577413; -11.100308356759246 -10.05388382655209 … -7.5473992065215585 -10.053883826552196; … ; -6.287956198199238 -7.5473992065215585 … -2.894612367852207 -4.485542759371974; -9.111848223577415 -10.053883826552196 … -4.485542759371975 -6.87110450013523]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.015764142825817958 - 0.0709070474872243im -0.04160640136955601 - 0.0034223768947953146im … -0.09982909835109327 + 0.01719640291915934im 0.02774514350036395 + 0.05245492121825836im; -0.051790780715942515 - 0.04071130253376386im 0.0025905067821940598 + 0.01921382735087431im … -0.023910953326053794 + 0.05907255669125744im 0.030630387904204984 - 0.05301035735532752im; … ; -0.061749884364569935 + 0.03062367554844759im -0.004957398407399563 - 0.05765060190832694im … 0.10992571223956332 - 0.051015921749889864im -0.09663745413505856 - 0.11521695872705699im; 0.05826488649595572 - 0.01713582077632637im -0.055908243978334174 - 0.09207663137976109im … -0.012135547057317203 - 0.09001837316645592im -0.06630437925983179 + 0.0599232538032559im;;; -0.10102340240934142 - 0.058024003570517874im -0.05133778713586445 + 0.015954953469708107im … -0.03548360849479907 + 0.12330203065509747im 0.03607577118755214 - 0.03444831346369548im; -0.09258798021299497 - 0.003411013072228776im 0.012593820440066114 + 0.03197484566986873im … 0.0729933460546483 - 0.01835293168261512im -0.029738989167393686 - 0.11325913023069067im; … ; -0.0018279146045866168 - 0.033972539914663424im -0.06684434472558212 - 0.11588026770321913im … -0.06409948855563173 - 0.05928702642186566im -0.08926976201539376 + 0.0312156688719im; -0.03612047837358871 - 0.12583937999150308im -0.13202847656739533 - 0.04731822040935861im … -0.1188874287555852 + 0.04073976290231912im -0.003208454291190519 + 0.03299602240734642im;;; -0.11879029689627793 + 0.01929431295747084im -0.042507442714112886 - 0.013399504302439347im … 0.012851437164891535 + 0.008605283823739079im -0.10598733257765929 - 0.05068248148713563im; -0.052649670812150426 + 0.06401431336934606im 0.015279678473852781 - 0.037284878673835425im … -0.07662267828162184 - 0.09917828182526327im -0.17359451043802196 + 0.004331549895239952im; … ; -0.06725880332582945 - 0.07249775096218576im -0.11186633109752073 - 0.04673859576945333im … -0.09307712519618394 + 0.029087378024027312im -0.03581153448579711 + 0.011373915384782458im; -0.13637681020708076 - 0.030950199131638476im -0.08961526059262563 + 0.0029568738707868164im … -0.04761246167849747 + 0.08317808212171493im -0.047462400171663595 - 0.034598821594587735im;;; … ;;; -0.10749356489810948 + 0.05227488722999832im -0.04303309838877663 - 0.02079601095338557im … -0.03366303930698656 + 0.03580540563285849im -0.103286259947808 - 0.009825218601715216im; -0.03394279073065826 + 0.04196569596940673im -0.05069306178344801 - 0.027316286296687753im … -0.028491458138390297 - 0.03071175577275563im -0.1017556576035779 + 0.03219745621026787im; … ; -0.06142140136415704 - 0.03511133933158394im -0.03371118935981873 - 0.034950580597248364im … -0.0035468606085378995 - 0.11600519195304701im -0.06848005401597984 - 0.02412998379293966im; -0.10287689089741328 - 0.001749106540297308im -0.03977984765773533 - 0.02371337526162543im … -0.10390924542187062 + 0.01182628689425994im -0.06583379072874991 + 0.016788025785688953im;;; -0.05349451509993131 + 0.023593265171722673im -0.10776606745064318 - 0.06760122498049677im … 0.014601709679135277 - 0.03156699955757679im -0.10007479393375258 - 0.014125016711104978im; -0.03479315432575002 - 0.04457620320995968im -0.13932552316837207 - 0.009064389564701559im … -0.08313793045319659 - 0.026122205005821478im -0.0406937696143341 + 0.04504128565096151im; … ; -0.01855291666681918 - 0.07087284100180728im -0.02698514943195582 - 0.0775395079844479im … -0.07381648318305961 + 0.053619355770333284im 0.06751029628181968 + 0.030820635183795516im; -0.05796458549842236 - 0.01611198257109142im -0.0433354441630603 - 0.09283155936488303im … 0.03384123726758063 + 0.10299298858674846im 0.012326632948666628 - 0.043870795627884755im;;; -0.008902404999502858 - 0.02148698906481622im -0.1217811101075344 - 0.0061604291647094946im … -0.017998031772698646 - 0.06386115713507733im -0.06049681731288752 + 0.05089849198661618im; -0.06349189773401065 - 0.06764654879129056im -0.0839834134911502 + 0.060138452034065606im … -0.06630527349144 + 0.019489360609028852im 0.01800334182950118 - 0.015522348882408825im; … ; -0.05956245955368222 - 0.1057692073211477im -0.04566750276344489 - 0.07173900044803705im … 0.12643351069867603 + 0.13254183457394314im 0.11229147185704937 - 0.14089530815809817im; -0.026084503478621433 + 0.012857708368027146im -0.07358098180525688 - 0.09813049774267689im … 0.13320949995767248 - 0.01995214096461466im -0.040444620617892904 - 0.0994670349393463im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668722608 -11.100308396742223 … -8.289845772412372 -11.100308396742284; -11.100308396742223 -9.130057825947679 … -9.130057795896388 -11.100308356759246; … ; -8.289845772412372 -9.130057795896388 … -4.149589921643205 -6.287956198199239; -11.100308396742282 -11.100308356759248 … -6.28795619819924 -9.111848223577415;;; -11.100308396742225 -9.130057825947677 … -9.13005779589639 -11.100308356759248; -9.130057825947679 -6.903159481981963 … -9.130057827297362 -10.053883826552092; … ; -9.130057795896388 -9.130057827297362 … -5.2943536692142965 -7.547399206521557; -11.100308356759246 -10.053883826552092 … -7.547399206521558 -10.053883826552196;;; -8.28984577241267 -6.307621931516577 … -8.289845781011625 -9.111848193526084; -6.307621931516579 -4.516655665815526 … -7.547399237611389 -7.547399206521789; … ; -8.289845781011623 -7.547399237611388 … -5.768969083581122 -7.54739923761146; -9.111848193526082 -7.5473992065217885 … -7.547399237611461 -9.111848224927321;;; … ;;; -5.301031718249665 -6.307621955788784 … -2.549703573275923 -3.84958217938772; -6.307621955788785 -6.903159495208792 … -3.329060698546158 -4.8784193586305244; … ; -2.549703573275922 -3.329060698546159 … -1.256798470902426 -1.8141947460409882; -3.849582179387719 -4.878419358630526 … -1.8141947460409877 -2.714767335322538;;; -8.289845772412374 -9.130057795896386 … -4.149589921643205 -6.287956198199238; -9.130057795896388 -9.130057827297358 … -5.294353669214296 -7.547399206521556; … ; -4.149589921643205 -5.2943536692142965 … -1.9094492399152498 -2.894612367852207; -6.287956198199238 -7.547399206521557 … -2.894612367852207 -4.485542759371974;;; -11.100308396742284 -11.100308356759248 … -6.28795619819924 -9.111848223577413; -11.100308356759246 -10.05388382655209 … -7.5473992065215585 -10.053883826552196; … ; -6.287956198199238 -7.5473992065215585 … -2.894612367852207 -4.485542759371974; -9.111848223577415 -10.053883826552196 … -4.485542759371975 -6.87110450013523])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668722608 -11.100308396742223 … -8.289845772412372 -11.100308396742284; -11.100308396742223 -9.130057825947679 … -9.130057795896388 -11.100308356759246; … ; -8.289845772412372 -9.130057795896388 … -4.149589921643205 -6.287956198199239; -11.100308396742282 -11.100308356759248 … -6.28795619819924 -9.111848223577415;;; -11.100308396742225 -9.130057825947677 … -9.13005779589639 -11.100308356759248; -9.130057825947679 -6.903159481981963 … -9.130057827297362 -10.053883826552092; … ; -9.130057795896388 -9.130057827297362 … -5.2943536692142965 -7.547399206521557; -11.100308356759246 -10.053883826552092 … -7.547399206521558 -10.053883826552196;;; -8.28984577241267 -6.307621931516577 … -8.289845781011625 -9.111848193526084; -6.307621931516579 -4.516655665815526 … -7.547399237611389 -7.547399206521789; … ; -8.289845781011623 -7.547399237611388 … -5.768969083581122 -7.54739923761146; -9.111848193526082 -7.5473992065217885 … -7.547399237611461 -9.111848224927321;;; … ;;; -5.301031718249665 -6.307621955788784 … -2.549703573275923 -3.84958217938772; -6.307621955788785 -6.903159495208792 … -3.329060698546158 -4.8784193586305244; … ; -2.549703573275922 -3.329060698546159 … -1.256798470902426 -1.8141947460409882; -3.849582179387719 -4.878419358630526 … -1.8141947460409877 -2.714767335322538;;; -8.289845772412374 -9.130057795896386 … -4.149589921643205 -6.287956198199238; -9.130057795896388 -9.130057827297358 … -5.294353669214296 -7.547399206521556; … ; -4.149589921643205 -5.2943536692142965 … -1.9094492399152498 -2.894612367852207; -6.287956198199238 -7.547399206521557 … -2.894612367852207 -4.485542759371974;;; -11.100308396742284 -11.100308356759248 … -6.28795619819924 -9.111848223577413; -11.100308356759246 -10.05388382655209 … -7.5473992065215585 -10.053883826552196; … ; -6.287956198199238 -7.5473992065215585 … -2.894612367852207 -4.485542759371974; -9.111848223577415 -10.053883826552196 … -4.485542759371975 -6.87110450013523]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.015764142825817958 - 0.0709070474872243im -0.04160640136955601 - 0.0034223768947953146im … -0.09982909835109327 + 0.01719640291915934im 0.02774514350036395 + 0.05245492121825836im; -0.051790780715942515 - 0.04071130253376386im 0.0025905067821940598 + 0.01921382735087431im … -0.023910953326053794 + 0.05907255669125744im 0.030630387904204984 - 0.05301035735532752im; … ; -0.061749884364569935 + 0.03062367554844759im -0.004957398407399563 - 0.05765060190832694im … 0.10992571223956332 - 0.051015921749889864im -0.09663745413505856 - 0.11521695872705699im; 0.05826488649595572 - 0.01713582077632637im -0.055908243978334174 - 0.09207663137976109im … -0.012135547057317203 - 0.09001837316645592im -0.06630437925983179 + 0.0599232538032559im;;; -0.10102340240934142 - 0.058024003570517874im -0.05133778713586445 + 0.015954953469708107im … -0.03548360849479907 + 0.12330203065509747im 0.03607577118755214 - 0.03444831346369548im; -0.09258798021299497 - 0.003411013072228776im 0.012593820440066114 + 0.03197484566986873im … 0.0729933460546483 - 0.01835293168261512im -0.029738989167393686 - 0.11325913023069067im; … ; -0.0018279146045866168 - 0.033972539914663424im -0.06684434472558212 - 0.11588026770321913im … -0.06409948855563173 - 0.05928702642186566im -0.08926976201539376 + 0.0312156688719im; -0.03612047837358871 - 0.12583937999150308im -0.13202847656739533 - 0.04731822040935861im … -0.1188874287555852 + 0.04073976290231912im -0.003208454291190519 + 0.03299602240734642im;;; -0.11879029689627793 + 0.01929431295747084im -0.042507442714112886 - 0.013399504302439347im … 0.012851437164891535 + 0.008605283823739079im -0.10598733257765929 - 0.05068248148713563im; -0.052649670812150426 + 0.06401431336934606im 0.015279678473852781 - 0.037284878673835425im … -0.07662267828162184 - 0.09917828182526327im -0.17359451043802196 + 0.004331549895239952im; … ; -0.06725880332582945 - 0.07249775096218576im -0.11186633109752073 - 0.04673859576945333im … -0.09307712519618394 + 0.029087378024027312im -0.03581153448579711 + 0.011373915384782458im; -0.13637681020708076 - 0.030950199131638476im -0.08961526059262563 + 0.0029568738707868164im … -0.04761246167849747 + 0.08317808212171493im -0.047462400171663595 - 0.034598821594587735im;;; … ;;; -0.10749356489810948 + 0.05227488722999832im -0.04303309838877663 - 0.02079601095338557im … -0.03366303930698656 + 0.03580540563285849im -0.103286259947808 - 0.009825218601715216im; -0.03394279073065826 + 0.04196569596940673im -0.05069306178344801 - 0.027316286296687753im … -0.028491458138390297 - 0.03071175577275563im -0.1017556576035779 + 0.03219745621026787im; … ; -0.06142140136415704 - 0.03511133933158394im -0.03371118935981873 - 0.034950580597248364im … -0.0035468606085378995 - 0.11600519195304701im -0.06848005401597984 - 0.02412998379293966im; -0.10287689089741328 - 0.001749106540297308im -0.03977984765773533 - 0.02371337526162543im … -0.10390924542187062 + 0.01182628689425994im -0.06583379072874991 + 0.016788025785688953im;;; -0.05349451509993131 + 0.023593265171722673im -0.10776606745064318 - 0.06760122498049677im … 0.014601709679135277 - 0.03156699955757679im -0.10007479393375258 - 0.014125016711104978im; -0.03479315432575002 - 0.04457620320995968im -0.13932552316837207 - 0.009064389564701559im … -0.08313793045319659 - 0.026122205005821478im -0.0406937696143341 + 0.04504128565096151im; … ; -0.01855291666681918 - 0.07087284100180728im -0.02698514943195582 - 0.0775395079844479im … -0.07381648318305961 + 0.053619355770333284im 0.06751029628181968 + 0.030820635183795516im; -0.05796458549842236 - 0.01611198257109142im -0.0433354441630603 - 0.09283155936488303im … 0.03384123726758063 + 0.10299298858674846im 0.012326632948666628 - 0.043870795627884755im;;; -0.008902404999502858 - 0.02148698906481622im -0.1217811101075344 - 0.0061604291647094946im … -0.017998031772698646 - 0.06386115713507733im -0.06049681731288752 + 0.05089849198661618im; -0.06349189773401065 - 0.06764654879129056im -0.0839834134911502 + 0.060138452034065606im … -0.06630527349144 + 0.019489360609028852im 0.01800334182950118 - 0.015522348882408825im; … ; -0.05956245955368222 - 0.1057692073211477im -0.04566750276344489 - 0.07173900044803705im … 0.12643351069867603 + 0.13254183457394314im 0.11229147185704937 - 0.14089530815809817im; -0.026084503478621433 + 0.012857708368027146im -0.07358098180525688 - 0.09813049774267689im … 0.13320949995767248 - 0.01995214096461466im -0.040444620617892904 - 0.0994670349393463im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488506), converged = true, ρ = [7.589784542392162e-5 0.0011262712728465673 … 0.006697037550120833 0.001126271272846574; 0.001126271272846557 0.005274334457401358 … 0.005274334457401393 0.001126271272846574; … ; 0.006697037550120835 0.005274334457401392 … 0.02324475419112254 0.012258986825301221; 0.001126271272846557 0.0011262712728465707 … 0.012258986825301223 0.003770008629930653;;; 0.0011262712728465638 0.005274334457401372 … 0.005274334457401392 0.0011262712728465722; 0.005274334457401361 0.014620065304758258 … 0.005274334457401393 0.002588080874874448; … ; 0.005274334457401396 0.005274334457401392 … 0.01810768664620325 0.008922003044793004; 0.0011262712728465538 0.002588080874874443 … 0.008922003044793006 0.002588080874874459;;; 0.006697037550120808 0.01641210910164352 … 0.006697037550120832 0.0037700086299306394; 0.016412109101643507 0.0312778393159551 … 0.00892200304479298 0.00892200304479297; … ; 0.006697037550120832 0.008922003044792974 … 0.01647675635950651 0.008922003044793002; 0.0037700086299306233 0.008922003044792967 … 0.008922003044793002 0.0037700086299306485;;; … ;;; 0.0198538398534534 0.016412109101643535 … 0.037156673635732496 0.02719080068664229; 0.016412109101643528 0.014620065304758272 … 0.03230127212650282 0.022322100931768243; … ; 0.037156673635732496 0.03230127212650283 … 0.046296980701500845 0.04263658273150176; 0.027190800686642275 0.022322100931768243 … 0.04263658273150176 0.03477222914206463;;; 0.006697037550120815 0.005274334457401371 … 0.023244754191122517 0.012258986825301205; 0.005274334457401362 0.005274334457401358 … 0.01810768664620321 0.008922003044792973; … ; 0.023244754191122517 0.018107686646203217 … 0.040371110335645166 0.03149160381146188; 0.012258986825301188 0.008922003044792971 … 0.03149160381146188 0.020047163432809434;;; 0.0011262712728465642 0.0011262712728465647 … 0.012258986825301207 0.0037700086299306402; 0.0011262712728465551 0.0025880808748744216 … 0.008922003044792988 0.002588080874874449; … ; 0.012258986825301209 0.00892200304479299 … 0.03149160381146189 0.02004716343280944; 0.0037700086299306216 0.0025880808748744446 … 0.020047163432809444 0.008952603496826132;;;;], eigenvalues = [[-0.17836835653964755, 0.2624919449909531, 0.2624919449909532, 0.2624919449909533, 0.3546921481674877, 0.35469214816748795, 0.35469214816751915], [-0.12755037617954443, 0.06475320594651507, 0.2254516651736935, 0.2254516651736938, 0.321977649611182, 0.38922276908470066, 0.38922276908470105], [-0.10818729216544024, 0.07755003473389539, 0.1727832801143398, 0.17278328011433985, 0.28435185361991516, 0.33054764843326156, 0.5267232426386423], [-0.05777325374478581, 0.012724782205100364, 0.09766073750115653, 0.18417825332933055, 0.31522841796000206, 0.47203121830445566, 0.4979135176580158]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930543426, n_iter = 10, ψ = Matrix{ComplexF64}[[0.9265094508376903 + 0.20804789048490654im 4.9990578865587316e-15 + 4.5474749079577635e-14im … -4.936852906415334e-12 + 1.6325205845145706e-12im 1.4907230419323256e-8 - 4.492280751162787e-9im; 0.08393997646648972 - 0.053155221222806394im 0.32375406760948705 + 0.25427975447584816im … -0.4573719133983607 - 0.21224958741947297im -0.05736925091552431 - 0.1234501191851101im; … ; -0.01147239186987236 - 0.002576127987784632im -0.021606121323094713 + 0.03285058515914375im … 0.026785160626107956 + 0.060768229798232126im -0.050259818582069495 - 0.011354593336774677im; 0.0839399764665132 - 0.053155221222929726im -0.2512830603664801 + 0.09669583915687385im … 0.06196882029404307 - 0.010672104351965642im -0.4228476609937832 + 0.10732417470559112im], [0.8376554634410217 - 0.38342133627155683im 0.007575156120138835 - 0.2028894987092306im … -1.3332360988970502e-10 - 3.14163994716108e-11im -5.5054264940681036e-11 - 1.0006546338371165e-10im; 0.021808669834785917 - 0.05862628801979012im 0.0061284421822760055 + 0.00660381849811836im … -8.109702232239738e-11 - 1.5770742819496472e-10im -1.61504126517694e-10 + 1.872253613445394e-10im; … ; -0.004493869185666447 + 0.0020569857219476253im -0.003154167921250294 + 0.08447978341902737im … 0.03815157788180558 - 0.038942158851398116im -0.013071256736488674 + 0.08925223782188292im; 0.04076191704030901 - 0.10957659989106087im -0.06810487397347431 - 0.07338769187667228im … -0.00247193776344453 - 0.241051757378726im 0.23819781198812665 + 0.31993854941462213im], [-0.3913830379320529 - 0.8387079229304351im 8.32538730676673e-15 + 1.3727002264809201e-14im … -6.862406727133619e-13 + 3.3448102377036822e-12im 1.3453256320086353e-8 + 6.818417974201159e-9im; -0.06440721543426962 - 0.023421804690767087im -0.05085137892798076 - 0.011773831239363148im … 0.025526666324353617 - 0.004727685505903407im 0.001864479049847728 - 0.00588426390018198im; … ; 0.004480288195280425 + 0.009600960803655849im 1.1119036671251925e-14 + 2.7009843933608137e-14im … 4.447790092838851e-12 - 1.6351672871463038e-12im 0.017465027220656393 + 0.05122260017640581im; -0.15059284190614194 - 0.05476336940157305im 0.28568389553607315 + 0.06614558041003354im … 0.36587261898197976 - 0.06776171383853719im 0.14059081654419492 + 0.06680465123405414im], [-0.5389990658194429 - 0.5902536538460557im 3.0341511653665194e-15 + 4.324940428075133e-15im … -0.1300578947927899 - 0.12680255450485256im 4.075380567059674e-6 + 6.40908639650033e-6im; -0.39145462043779367 - 0.01776736504792331im 0.021685666128336736 + 0.6203925761603317im … 0.18197898908935514 - 0.0023070337298402117im -1.852394609185079e-6 - 2.672046265492678e-7im; … ; 0.008935504977383192 + 0.009785201489830114im 0.00017313820167594784 - 0.00018568062324968816im … 0.009343496085887509 + 0.009109550333554187im 0.03960065859384668 - 0.023597684009950593im; -0.06702243240094787 - 0.0030420180544336738im -0.00018561238716627136 - 0.005310076544400919im … 0.14337666698272286 - 0.0018154780855768834im 0.11565019920154862 - 0.45682030670091217im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653964755, 0.2624919449909531, 0.2624919449909532, 0.2624919449909533, 0.3546921481674877, 0.35469214816748795, 0.35469214816751915], [-0.12755037617954443, 0.06475320594651507, 0.2254516651736935, 0.2254516651736938, 0.321977649611182, 0.38922276908470066, 0.38922276908470105], [-0.10818729216544024, 0.07755003473389539, 0.1727832801143398, 0.17278328011433985, 0.28435185361991516, 0.33054764843326156, 0.5267232426386423], [-0.05777325374478581, 0.012724782205100364, 0.09766073750115653, 0.18417825332933055, 0.31522841796000206, 0.47203121830445566, 0.4979135176580158]], X = [[0.9265094508376903 + 0.20804789048490654im 4.9990578865587316e-15 + 4.5474749079577635e-14im … -4.936852906415334e-12 + 1.6325205845145706e-12im 1.4907230419323256e-8 - 4.492280751162787e-9im; 0.08393997646648972 - 0.053155221222806394im 0.32375406760948705 + 0.25427975447584816im … -0.4573719133983607 - 0.21224958741947297im -0.05736925091552431 - 0.1234501191851101im; … ; -0.01147239186987236 - 0.002576127987784632im -0.021606121323094713 + 0.03285058515914375im … 0.026785160626107956 + 0.060768229798232126im -0.050259818582069495 - 0.011354593336774677im; 0.0839399764665132 - 0.053155221222929726im -0.2512830603664801 + 0.09669583915687385im … 0.06196882029404307 - 0.010672104351965642im -0.4228476609937832 + 0.10732417470559112im], [0.8376554634410217 - 0.38342133627155683im 0.007575156120138835 - 0.2028894987092306im … -1.3332360988970502e-10 - 3.14163994716108e-11im -5.5054264940681036e-11 - 1.0006546338371165e-10im; 0.021808669834785917 - 0.05862628801979012im 0.0061284421822760055 + 0.00660381849811836im … -8.109702232239738e-11 - 1.5770742819496472e-10im -1.61504126517694e-10 + 1.872253613445394e-10im; … ; -0.004493869185666447 + 0.0020569857219476253im -0.003154167921250294 + 0.08447978341902737im … 0.03815157788180558 - 0.038942158851398116im -0.013071256736488674 + 0.08925223782188292im; 0.04076191704030901 - 0.10957659989106087im -0.06810487397347431 - 0.07338769187667228im … -0.00247193776344453 - 0.241051757378726im 0.23819781198812665 + 0.31993854941462213im], [-0.3913830379320529 - 0.8387079229304351im 8.32538730676673e-15 + 1.3727002264809201e-14im … -6.862406727133619e-13 + 3.3448102377036822e-12im 1.3453256320086353e-8 + 6.818417974201159e-9im; -0.06440721543426962 - 0.023421804690767087im -0.05085137892798076 - 0.011773831239363148im … 0.025526666324353617 - 0.004727685505903407im 0.001864479049847728 - 0.00588426390018198im; … ; 0.004480288195280425 + 0.009600960803655849im 1.1119036671251925e-14 + 2.7009843933608137e-14im … 4.447790092838851e-12 - 1.6351672871463038e-12im 0.017465027220656393 + 0.05122260017640581im; -0.15059284190614194 - 0.05476336940157305im 0.28568389553607315 + 0.06614558041003354im … 0.36587261898197976 - 0.06776171383853719im 0.14059081654419492 + 0.06680465123405414im], [-0.5389990658194429 - 0.5902536538460557im 3.0341511653665194e-15 + 4.324940428075133e-15im … -0.1300578947927899 - 0.12680255450485256im 4.075380567059674e-6 + 6.40908639650033e-6im; -0.39145462043779367 - 0.01776736504792331im 0.021685666128336736 + 0.6203925761603317im … 0.18197898908935514 - 0.0023070337298402117im -1.852394609185079e-6 - 2.672046265492678e-7im; … ; 0.008935504977383192 + 0.009785201489830114im 0.00017313820167594784 - 0.00018568062324968816im … 0.009343496085887509 + 0.009109550333554187im 0.03960065859384668 - 0.023597684009950593im; -0.06702243240094787 - 0.0030420180544336738im -0.00018561238716627136 - 0.005310076544400919im … 0.14337666698272286 - 0.0018154780855768834im 0.11565019920154862 - 0.45682030670091217im]], residual_norms = [[0.0, 1.5641535811053938e-12, 7.564241848979242e-13, 2.46310077818498e-12, 7.271381560528865e-10, 1.0487071831552738e-10, 3.148701696430981e-7], [0.0, 0.0, 4.653860683895552e-12, 5.068718133534638e-12, 6.486802268884849e-10, 1.5373448324639547e-8, 1.4973696464981993e-8], [1.1519838061260195e-12, 1.0241602667718207e-12, 1.8285442304079338e-12, 1.167547969105187e-12, 9.70647794027381e-12, 3.166229011186132e-10, 6.061633047816174e-7], [9.504608902047074e-13, 8.079591728544683e-13, 1.0772352768748213e-12, 3.0576325758955725e-12, 1.192114303901944e-10, 1.1486677005827541e-5, 6.71187650740291e-6]], n_iter = [5, 3, 3, 3], converged = 1, n_matvec = 121)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21070008963534015, 0.02761868195408038, 0.00231065291750496, 0.00025708539558694015, 9.303324407494561e-6, 9.740403673053275e-7, 3.589796298998057e-8, 2.3225800794285985e-9, 2.0071099886916e-10, 3.7747966707636594e-11], history_Etot = [-7.9052609761457635, -7.910544289073189, -7.910593452148312, -7.910594393190198, -7.910594396440147, -7.910594396488432, -7.910594396488505, -7.910594396488505, -7.9105943964885075, -7.910594396488506], occupation_threshold = 1.0e-6, runtime_ns = 0x000000009cb4ff1c)