Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model. Values up to1e-2atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solvertoself_consistent_field, e.g.solver = scf_anderson_solver(; m=15)(::DFTK.var"#anderson#825"{DFTK.var"#anderson#824#826"{Base.Pairs{Symbol, Int64, Nothing, @NamedTuple{m::Int64}}}}) (generic function with 1 method)All keyword arguments are passed through to
DFTK.AndersonAcceleration.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiffparameter of theAdaptiveDiagtolalgorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBandsalgorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)AdaptiveBands(4, 7, 1.0e-6, 0.01)Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptiveinstead ofself_consistent_field:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668724758 -11.100308396742097 … -8.2898457724122 -11.100308396742157; -11.100308396742097 -9.130057825947562 … -9.130057795896269 -11.10030835675912; … ; -8.2898457724122 -9.130057795896269 … -4.14958992164318 -6.287956198199085; -11.100308396742156 -11.100308356759122 … -6.287956198199086 -9.11184822357707;;; -11.100308396742099 -9.13005782594756 … -9.13005779589627 -11.100308356759122; -9.130057825947562 -6.903159481982037 … -9.130057827297243 -10.053883826551838; … ; -9.130057795896269 -9.130057827297243 … -5.294353669214257 -7.547399206521408; -11.10030835675912 -10.053883826551838 … -7.547399206521409 -10.053883826551942;;; -8.289845772412498 -6.307621931516632 … -8.289845781011453 -9.11184819352574; -6.307621931516634 -4.516655665815759 … -7.5473992376112395 -7.54739920652164; … ; -8.28984578101145 -7.5473992376112395 … -5.768969083581083 -7.5473992376113115; -9.11184819352574 -7.54739920652164 … -7.547399237611312 -9.111848224926977;;; … ;;; -5.301031718249701 -6.30762195578884 … -2.5497035732760125 -3.8495821793877685; -6.30762195578884 -6.9031594952088655 … -3.329060698546254 -4.878419358630577; … ; -2.549703573276012 -3.3290606985462543 … -1.256798470902508 -1.8141947460410766; -3.849582179387769 -4.878419358630579 … -1.8141947460410766 -2.714767335322605;;; -8.289845772412201 -9.130057795896269 … -4.149589921643181 -6.287956198199084; -9.13005779589627 -9.130057827297241 … -5.2943536692142565 -7.547399206521407; … ; -4.149589921643181 -5.294353669214257 … -1.9094492399153127 -2.894612367852227; -6.287956198199085 -7.547399206521407 … -2.8946123678522264 -4.485542759371892;;; -11.100308396742157 -11.100308356759122 … -6.287956198199086 -9.111848223577068; -11.10030835675912 -10.053883826551838 … -7.54739920652141 -10.053883826551942; … ; -6.287956198199084 -7.54739920652141 … -2.8946123678522264 -4.485542759371892; -9.11184822357707 -10.053883826551942 … -4.485542759371893 -6.871104500134954])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668724758 -11.100308396742097 … -8.2898457724122 -11.100308396742157; -11.100308396742097 -9.130057825947562 … -9.130057795896269 -11.10030835675912; … ; -8.2898457724122 -9.130057795896269 … -4.14958992164318 -6.287956198199085; -11.100308396742156 -11.100308356759122 … -6.287956198199086 -9.11184822357707;;; -11.100308396742099 -9.13005782594756 … -9.13005779589627 -11.100308356759122; -9.130057825947562 -6.903159481982037 … -9.130057827297243 -10.053883826551838; … ; -9.130057795896269 -9.130057827297243 … -5.294353669214257 -7.547399206521408; -11.10030835675912 -10.053883826551838 … -7.547399206521409 -10.053883826551942;;; -8.289845772412498 -6.307621931516632 … -8.289845781011453 -9.11184819352574; -6.307621931516634 -4.516655665815759 … -7.5473992376112395 -7.54739920652164; … ; -8.28984578101145 -7.5473992376112395 … -5.768969083581083 -7.5473992376113115; -9.11184819352574 -7.54739920652164 … -7.547399237611312 -9.111848224926977;;; … ;;; -5.301031718249701 -6.30762195578884 … -2.5497035732760125 -3.8495821793877685; -6.30762195578884 -6.9031594952088655 … -3.329060698546254 -4.878419358630577; … ; -2.549703573276012 -3.3290606985462543 … -1.256798470902508 -1.8141947460410766; -3.849582179387769 -4.878419358630579 … -1.8141947460410766 -2.714767335322605;;; -8.289845772412201 -9.130057795896269 … -4.149589921643181 -6.287956198199084; -9.13005779589627 -9.130057827297241 … -5.2943536692142565 -7.547399206521407; … ; -4.149589921643181 -5.294353669214257 … -1.9094492399153127 -2.894612367852227; -6.287956198199085 -7.547399206521407 … -2.8946123678522264 -4.485542759371892;;; -11.100308396742157 -11.100308356759122 … -6.287956198199086 -9.111848223577068; -11.10030835675912 -10.053883826551838 … -7.54739920652141 -10.053883826551942; … ; -6.287956198199084 -7.54739920652141 … -2.8946123678522264 -4.485542759371892; -9.11184822357707 -10.053883826551942 … -4.485542759371893 -6.871104500134954]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.014174836720949553 - 0.0019396483011924666im 0.0037177381313388685 - 0.007638279708141368im … 0.016266967019407535 - 0.05424042420040172im -0.017126990356867357 - 0.01206224389063193im; 0.0345980589151562 - 0.014362605321562229im 0.011351588587152692 - 0.01618475213436466im … -0.0518156449009676 - 0.036169322903470996im 0.027407871823293378 + 0.010971297640875928im; … ; 0.0042629275593631865 - 0.0012867943417808354im 0.04145001109602178 + 0.044432183621078356im … 0.021955759970744622 + 0.026664831753386235im 0.05877094639991357 - 0.03908478482938758im; 0.031839085666145475 + 0.022234334528325836im 0.036110762659466535 - 0.006357455397698893im … 0.017028900155856067 + 0.0331924851740605im 0.014539791296202566 - 0.011373008912661332im;;; 0.060166217142175495 - 0.056781943831358477im -0.019349657603703028 - 0.01335485855717952im … -0.025582697088207207 - 0.013470862605468766im 0.05349761272807483 + 0.03252584842702183im; 0.008854448795601058 + 0.05563618285504977im 0.004788780731395222 + 0.005374998186083321im … -0.0369714843237556 + 0.025691815549087497im 0.033991222623614446 + 0.00550880848486888im; … ; 0.06430695315317869 + 0.07449844245586076im 0.13959814010035915 - 0.0029409773704617975im … 0.11097836509068143 - 0.054119746955118245im 0.006713836575411367 - 0.05547327737130496im; 0.157024847802124 + 0.0055431902263453426im 0.07270137344659598 - 0.09780446745875121im … 0.02851998548980275 - 0.048181723697549986im 0.046484322097778745 + 0.06641428587986806im;;; -0.009233194238566885 - 0.009748610053724165im 0.04237560962585926 + 0.0746108478887147im … 0.05510142962026164 + 0.03800845595865252im 0.11147761845122989 - 0.05377237509395927im; 0.04943825462826196 + 0.06946078532154767im 0.06519006794087764 + 0.005268323180973295im … 0.046742791480928234 + 0.009801465493050637im 0.023522428948865186 - 0.0007094746993743586im; … ; 0.18977263802416153 + 0.010601457373096266im 0.0962860184556228 - 0.11041092733769706im … 0.01827456074694769 - 0.03864891874678963im 0.05305067081565353 + 0.070206454328684im; 0.14720002997102946 - 0.1391675380491769im -0.022592506013628954 - 0.07403828159546463im … 0.025887286442144223 + 0.038781108147645224im 0.18796328294050796 + 0.03579033009431942im;;; … ;;; 0.06505139480030885 - 0.029735337365105356im 0.02599148113687974 + 0.03152016510070038im … 0.017979495564488655 + 0.03640751458564763im 0.13152346568204532 + 0.010005821484427704im; 0.013461389452902268 + 0.018605890176863545im 0.07806230962184604 + 0.0758257578410922im … 0.12628698464826243 + 0.011738530517771004im 0.09091821432145228 - 0.0778591269548354im; … ; 0.053306398940019414 + 0.02817233289156089im 0.024472626639946687 + 0.003165015492290018im … -0.09232597104400399 + 0.1083148155303788im 0.024205561224828025 + 0.08884613980155824im; 0.04500918295547904 + 0.00501567382655678im 0.019600226472444644 + 0.013186229630738275im … 0.003303250058658766 - 0.005811490028685815im 0.03370614630588123 + 0.018691112954007758im;;; 0.024897931294422238 - 0.00633369283943782im 0.04852076604174904 + 0.03258475200562992im … -0.002968274161777796 + 0.012545004710329344im 0.04814657990926441 - 0.026466528318593387im; 0.08729143727726757 + 0.08307668342058758im 0.1290841565193133 + 0.01867406774182084im … 0.06915110084445523 - 0.07840384677975783im -0.0004103160086253374 - 0.04116052459238649im; … ; -0.023828013883435667 - 0.0070655125251887696im -0.01248143728365643 + 0.025889262616409038im … 0.014827675017111712 + 0.03628238456291453im 0.007812937342067165 - 0.02242340154391457im; -0.017046790325324468 + 0.04532439683148928im 0.023970119445297946 + 0.04416945274901788im … -0.07695223032137588 - 0.07474549991122754im -0.05896815065197131 + 0.00209552445669978im;;; -0.004645582167765165 - 0.01694551088019517im -0.02193679316488067 + 0.009390779662312916im … 0.0027320987591324206 + 0.008290330276932455im 0.007700164357519891 - 0.09490867128991587im; 0.09176432613149033 + 0.007681927623935228im 0.055770722067677754 - 0.015101668326170575im … -0.012810878718923719 - 0.08881358952551871im 0.016041788908715944 + 0.017615118226833593im; … ; -0.015919977026314355 + 0.019346693315040735im 0.0032056470747567345 + 0.037798470805220086im … -0.035210522384861914 - 0.04813803783170102im -0.013717702625257884 - 0.009281062285770362im; 0.01730513040923881 + 0.0025574413733914945im 0.008837941053963974 - 0.0008115650221651102im … -0.12035104647492498 + 0.013023499800986243im -0.03158543637456069 + 0.05019365400079062im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668724758 -11.100308396742097 … -8.2898457724122 -11.100308396742157; -11.100308396742097 -9.130057825947562 … -9.130057795896269 -11.10030835675912; … ; -8.2898457724122 -9.130057795896269 … -4.14958992164318 -6.287956198199085; -11.100308396742156 -11.100308356759122 … -6.287956198199086 -9.11184822357707;;; -11.100308396742099 -9.13005782594756 … -9.13005779589627 -11.100308356759122; -9.130057825947562 -6.903159481982037 … -9.130057827297243 -10.053883826551838; … ; -9.130057795896269 -9.130057827297243 … -5.294353669214257 -7.547399206521408; -11.10030835675912 -10.053883826551838 … -7.547399206521409 -10.053883826551942;;; -8.289845772412498 -6.307621931516632 … -8.289845781011453 -9.11184819352574; -6.307621931516634 -4.516655665815759 … -7.5473992376112395 -7.54739920652164; … ; -8.28984578101145 -7.5473992376112395 … -5.768969083581083 -7.5473992376113115; -9.11184819352574 -7.54739920652164 … -7.547399237611312 -9.111848224926977;;; … ;;; -5.301031718249701 -6.30762195578884 … -2.5497035732760125 -3.8495821793877685; -6.30762195578884 -6.9031594952088655 … -3.329060698546254 -4.878419358630577; … ; -2.549703573276012 -3.3290606985462543 … -1.256798470902508 -1.8141947460410766; -3.849582179387769 -4.878419358630579 … -1.8141947460410766 -2.714767335322605;;; -8.289845772412201 -9.130057795896269 … -4.149589921643181 -6.287956198199084; -9.13005779589627 -9.130057827297241 … -5.2943536692142565 -7.547399206521407; … ; -4.149589921643181 -5.294353669214257 … -1.9094492399153127 -2.894612367852227; -6.287956198199085 -7.547399206521407 … -2.8946123678522264 -4.485542759371892;;; -11.100308396742157 -11.100308356759122 … -6.287956198199086 -9.111848223577068; -11.10030835675912 -10.053883826551838 … -7.54739920652141 -10.053883826551942; … ; -6.287956198199084 -7.54739920652141 … -2.8946123678522264 -4.485542759371892; -9.11184822357707 -10.053883826551942 … -4.485542759371893 -6.871104500134954])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668724758 -11.100308396742097 … -8.2898457724122 -11.100308396742157; -11.100308396742097 -9.130057825947562 … -9.130057795896269 -11.10030835675912; … ; -8.2898457724122 -9.130057795896269 … -4.14958992164318 -6.287956198199085; -11.100308396742156 -11.100308356759122 … -6.287956198199086 -9.11184822357707;;; -11.100308396742099 -9.13005782594756 … -9.13005779589627 -11.100308356759122; -9.130057825947562 -6.903159481982037 … -9.130057827297243 -10.053883826551838; … ; -9.130057795896269 -9.130057827297243 … -5.294353669214257 -7.547399206521408; -11.10030835675912 -10.053883826551838 … -7.547399206521409 -10.053883826551942;;; -8.289845772412498 -6.307621931516632 … -8.289845781011453 -9.11184819352574; -6.307621931516634 -4.516655665815759 … -7.5473992376112395 -7.54739920652164; … ; -8.28984578101145 -7.5473992376112395 … -5.768969083581083 -7.5473992376113115; -9.11184819352574 -7.54739920652164 … -7.547399237611312 -9.111848224926977;;; … ;;; -5.301031718249701 -6.30762195578884 … -2.5497035732760125 -3.8495821793877685; -6.30762195578884 -6.9031594952088655 … -3.329060698546254 -4.878419358630577; … ; -2.549703573276012 -3.3290606985462543 … -1.256798470902508 -1.8141947460410766; -3.849582179387769 -4.878419358630579 … -1.8141947460410766 -2.714767335322605;;; -8.289845772412201 -9.130057795896269 … -4.149589921643181 -6.287956198199084; -9.13005779589627 -9.130057827297241 … -5.2943536692142565 -7.547399206521407; … ; -4.149589921643181 -5.294353669214257 … -1.9094492399153127 -2.894612367852227; -6.287956198199085 -7.547399206521407 … -2.8946123678522264 -4.485542759371892;;; -11.100308396742157 -11.100308356759122 … -6.287956198199086 -9.111848223577068; -11.10030835675912 -10.053883826551838 … -7.54739920652141 -10.053883826551942; … ; -6.287956198199084 -7.54739920652141 … -2.8946123678522264 -4.485542759371892; -9.11184822357707 -10.053883826551942 … -4.485542759371893 -6.871104500134954]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.014174836720949553 - 0.0019396483011924666im 0.0037177381313388685 - 0.007638279708141368im … 0.016266967019407535 - 0.05424042420040172im -0.017126990356867357 - 0.01206224389063193im; 0.0345980589151562 - 0.014362605321562229im 0.011351588587152692 - 0.01618475213436466im … -0.0518156449009676 - 0.036169322903470996im 0.027407871823293378 + 0.010971297640875928im; … ; 0.0042629275593631865 - 0.0012867943417808354im 0.04145001109602178 + 0.044432183621078356im … 0.021955759970744622 + 0.026664831753386235im 0.05877094639991357 - 0.03908478482938758im; 0.031839085666145475 + 0.022234334528325836im 0.036110762659466535 - 0.006357455397698893im … 0.017028900155856067 + 0.0331924851740605im 0.014539791296202566 - 0.011373008912661332im;;; 0.060166217142175495 - 0.056781943831358477im -0.019349657603703028 - 0.01335485855717952im … -0.025582697088207207 - 0.013470862605468766im 0.05349761272807483 + 0.03252584842702183im; 0.008854448795601058 + 0.05563618285504977im 0.004788780731395222 + 0.005374998186083321im … -0.0369714843237556 + 0.025691815549087497im 0.033991222623614446 + 0.00550880848486888im; … ; 0.06430695315317869 + 0.07449844245586076im 0.13959814010035915 - 0.0029409773704617975im … 0.11097836509068143 - 0.054119746955118245im 0.006713836575411367 - 0.05547327737130496im; 0.157024847802124 + 0.0055431902263453426im 0.07270137344659598 - 0.09780446745875121im … 0.02851998548980275 - 0.048181723697549986im 0.046484322097778745 + 0.06641428587986806im;;; -0.009233194238566885 - 0.009748610053724165im 0.04237560962585926 + 0.0746108478887147im … 0.05510142962026164 + 0.03800845595865252im 0.11147761845122989 - 0.05377237509395927im; 0.04943825462826196 + 0.06946078532154767im 0.06519006794087764 + 0.005268323180973295im … 0.046742791480928234 + 0.009801465493050637im 0.023522428948865186 - 0.0007094746993743586im; … ; 0.18977263802416153 + 0.010601457373096266im 0.0962860184556228 - 0.11041092733769706im … 0.01827456074694769 - 0.03864891874678963im 0.05305067081565353 + 0.070206454328684im; 0.14720002997102946 - 0.1391675380491769im -0.022592506013628954 - 0.07403828159546463im … 0.025887286442144223 + 0.038781108147645224im 0.18796328294050796 + 0.03579033009431942im;;; … ;;; 0.06505139480030885 - 0.029735337365105356im 0.02599148113687974 + 0.03152016510070038im … 0.017979495564488655 + 0.03640751458564763im 0.13152346568204532 + 0.010005821484427704im; 0.013461389452902268 + 0.018605890176863545im 0.07806230962184604 + 0.0758257578410922im … 0.12628698464826243 + 0.011738530517771004im 0.09091821432145228 - 0.0778591269548354im; … ; 0.053306398940019414 + 0.02817233289156089im 0.024472626639946687 + 0.003165015492290018im … -0.09232597104400399 + 0.1083148155303788im 0.024205561224828025 + 0.08884613980155824im; 0.04500918295547904 + 0.00501567382655678im 0.019600226472444644 + 0.013186229630738275im … 0.003303250058658766 - 0.005811490028685815im 0.03370614630588123 + 0.018691112954007758im;;; 0.024897931294422238 - 0.00633369283943782im 0.04852076604174904 + 0.03258475200562992im … -0.002968274161777796 + 0.012545004710329344im 0.04814657990926441 - 0.026466528318593387im; 0.08729143727726757 + 0.08307668342058758im 0.1290841565193133 + 0.01867406774182084im … 0.06915110084445523 - 0.07840384677975783im -0.0004103160086253374 - 0.04116052459238649im; … ; -0.023828013883435667 - 0.0070655125251887696im -0.01248143728365643 + 0.025889262616409038im … 0.014827675017111712 + 0.03628238456291453im 0.007812937342067165 - 0.02242340154391457im; -0.017046790325324468 + 0.04532439683148928im 0.023970119445297946 + 0.04416945274901788im … -0.07695223032137588 - 0.07474549991122754im -0.05896815065197131 + 0.00209552445669978im;;; -0.004645582167765165 - 0.01694551088019517im -0.02193679316488067 + 0.009390779662312916im … 0.0027320987591324206 + 0.008290330276932455im 0.007700164357519891 - 0.09490867128991587im; 0.09176432613149033 + 0.007681927623935228im 0.055770722067677754 - 0.015101668326170575im … -0.012810878718923719 - 0.08881358952551871im 0.016041788908715944 + 0.017615118226833593im; … ; -0.015919977026314355 + 0.019346693315040735im 0.0032056470747567345 + 0.037798470805220086im … -0.035210522384861914 - 0.04813803783170102im -0.013717702625257884 - 0.009281062285770362im; 0.01730513040923881 + 0.0025574413733914945im 0.008837941053963974 - 0.0008115650221651102im … -0.12035104647492498 + 0.013023499800986243im -0.03158543637456069 + 0.05019365400079062im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668724758 -11.100308396742097 … -8.2898457724122 -11.100308396742157; -11.100308396742097 -9.130057825947562 … -9.130057795896269 -11.10030835675912; … ; -8.2898457724122 -9.130057795896269 … -4.14958992164318 -6.287956198199085; -11.100308396742156 -11.100308356759122 … -6.287956198199086 -9.11184822357707;;; -11.100308396742099 -9.13005782594756 … -9.13005779589627 -11.100308356759122; -9.130057825947562 -6.903159481982037 … -9.130057827297243 -10.053883826551838; … ; -9.130057795896269 -9.130057827297243 … -5.294353669214257 -7.547399206521408; -11.10030835675912 -10.053883826551838 … -7.547399206521409 -10.053883826551942;;; -8.289845772412498 -6.307621931516632 … -8.289845781011453 -9.11184819352574; -6.307621931516634 -4.516655665815759 … -7.5473992376112395 -7.54739920652164; … ; -8.28984578101145 -7.5473992376112395 … -5.768969083581083 -7.5473992376113115; -9.11184819352574 -7.54739920652164 … -7.547399237611312 -9.111848224926977;;; … ;;; -5.301031718249701 -6.30762195578884 … -2.5497035732760125 -3.8495821793877685; -6.30762195578884 -6.9031594952088655 … -3.329060698546254 -4.878419358630577; … ; -2.549703573276012 -3.3290606985462543 … -1.256798470902508 -1.8141947460410766; -3.849582179387769 -4.878419358630579 … -1.8141947460410766 -2.714767335322605;;; -8.289845772412201 -9.130057795896269 … -4.149589921643181 -6.287956198199084; -9.13005779589627 -9.130057827297241 … -5.2943536692142565 -7.547399206521407; … ; -4.149589921643181 -5.294353669214257 … -1.9094492399153127 -2.894612367852227; -6.287956198199085 -7.547399206521407 … -2.8946123678522264 -4.485542759371892;;; -11.100308396742157 -11.100308356759122 … -6.287956198199086 -9.111848223577068; -11.10030835675912 -10.053883826551838 … -7.54739920652141 -10.053883826551942; … ; -6.287956198199084 -7.54739920652141 … -2.8946123678522264 -4.485542759371892; -9.11184822357707 -10.053883826551942 … -4.485542759371893 -6.871104500134954])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668724758 -11.100308396742097 … -8.2898457724122 -11.100308396742157; -11.100308396742097 -9.130057825947562 … -9.130057795896269 -11.10030835675912; … ; -8.2898457724122 -9.130057795896269 … -4.14958992164318 -6.287956198199085; -11.100308396742156 -11.100308356759122 … -6.287956198199086 -9.11184822357707;;; -11.100308396742099 -9.13005782594756 … -9.13005779589627 -11.100308356759122; -9.130057825947562 -6.903159481982037 … -9.130057827297243 -10.053883826551838; … ; -9.130057795896269 -9.130057827297243 … -5.294353669214257 -7.547399206521408; -11.10030835675912 -10.053883826551838 … -7.547399206521409 -10.053883826551942;;; -8.289845772412498 -6.307621931516632 … -8.289845781011453 -9.11184819352574; -6.307621931516634 -4.516655665815759 … -7.5473992376112395 -7.54739920652164; … ; -8.28984578101145 -7.5473992376112395 … -5.768969083581083 -7.5473992376113115; -9.11184819352574 -7.54739920652164 … -7.547399237611312 -9.111848224926977;;; … ;;; -5.301031718249701 -6.30762195578884 … -2.5497035732760125 -3.8495821793877685; -6.30762195578884 -6.9031594952088655 … -3.329060698546254 -4.878419358630577; … ; -2.549703573276012 -3.3290606985462543 … -1.256798470902508 -1.8141947460410766; -3.849582179387769 -4.878419358630579 … -1.8141947460410766 -2.714767335322605;;; -8.289845772412201 -9.130057795896269 … -4.149589921643181 -6.287956198199084; -9.13005779589627 -9.130057827297241 … -5.2943536692142565 -7.547399206521407; … ; -4.149589921643181 -5.294353669214257 … -1.9094492399153127 -2.894612367852227; -6.287956198199085 -7.547399206521407 … -2.8946123678522264 -4.485542759371892;;; -11.100308396742157 -11.100308356759122 … -6.287956198199086 -9.111848223577068; -11.10030835675912 -10.053883826551838 … -7.54739920652141 -10.053883826551942; … ; -6.287956198199084 -7.54739920652141 … -2.8946123678522264 -4.485542759371892; -9.11184822357707 -10.053883826551942 … -4.485542759371893 -6.871104500134954]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.014174836720949553 - 0.0019396483011924666im 0.0037177381313388685 - 0.007638279708141368im … 0.016266967019407535 - 0.05424042420040172im -0.017126990356867357 - 0.01206224389063193im; 0.0345980589151562 - 0.014362605321562229im 0.011351588587152692 - 0.01618475213436466im … -0.0518156449009676 - 0.036169322903470996im 0.027407871823293378 + 0.010971297640875928im; … ; 0.0042629275593631865 - 0.0012867943417808354im 0.04145001109602178 + 0.044432183621078356im … 0.021955759970744622 + 0.026664831753386235im 0.05877094639991357 - 0.03908478482938758im; 0.031839085666145475 + 0.022234334528325836im 0.036110762659466535 - 0.006357455397698893im … 0.017028900155856067 + 0.0331924851740605im 0.014539791296202566 - 0.011373008912661332im;;; 0.060166217142175495 - 0.056781943831358477im -0.019349657603703028 - 0.01335485855717952im … -0.025582697088207207 - 0.013470862605468766im 0.05349761272807483 + 0.03252584842702183im; 0.008854448795601058 + 0.05563618285504977im 0.004788780731395222 + 0.005374998186083321im … -0.0369714843237556 + 0.025691815549087497im 0.033991222623614446 + 0.00550880848486888im; … ; 0.06430695315317869 + 0.07449844245586076im 0.13959814010035915 - 0.0029409773704617975im … 0.11097836509068143 - 0.054119746955118245im 0.006713836575411367 - 0.05547327737130496im; 0.157024847802124 + 0.0055431902263453426im 0.07270137344659598 - 0.09780446745875121im … 0.02851998548980275 - 0.048181723697549986im 0.046484322097778745 + 0.06641428587986806im;;; -0.009233194238566885 - 0.009748610053724165im 0.04237560962585926 + 0.0746108478887147im … 0.05510142962026164 + 0.03800845595865252im 0.11147761845122989 - 0.05377237509395927im; 0.04943825462826196 + 0.06946078532154767im 0.06519006794087764 + 0.005268323180973295im … 0.046742791480928234 + 0.009801465493050637im 0.023522428948865186 - 0.0007094746993743586im; … ; 0.18977263802416153 + 0.010601457373096266im 0.0962860184556228 - 0.11041092733769706im … 0.01827456074694769 - 0.03864891874678963im 0.05305067081565353 + 0.070206454328684im; 0.14720002997102946 - 0.1391675380491769im -0.022592506013628954 - 0.07403828159546463im … 0.025887286442144223 + 0.038781108147645224im 0.18796328294050796 + 0.03579033009431942im;;; … ;;; 0.06505139480030885 - 0.029735337365105356im 0.02599148113687974 + 0.03152016510070038im … 0.017979495564488655 + 0.03640751458564763im 0.13152346568204532 + 0.010005821484427704im; 0.013461389452902268 + 0.018605890176863545im 0.07806230962184604 + 0.0758257578410922im … 0.12628698464826243 + 0.011738530517771004im 0.09091821432145228 - 0.0778591269548354im; … ; 0.053306398940019414 + 0.02817233289156089im 0.024472626639946687 + 0.003165015492290018im … -0.09232597104400399 + 0.1083148155303788im 0.024205561224828025 + 0.08884613980155824im; 0.04500918295547904 + 0.00501567382655678im 0.019600226472444644 + 0.013186229630738275im … 0.003303250058658766 - 0.005811490028685815im 0.03370614630588123 + 0.018691112954007758im;;; 0.024897931294422238 - 0.00633369283943782im 0.04852076604174904 + 0.03258475200562992im … -0.002968274161777796 + 0.012545004710329344im 0.04814657990926441 - 0.026466528318593387im; 0.08729143727726757 + 0.08307668342058758im 0.1290841565193133 + 0.01867406774182084im … 0.06915110084445523 - 0.07840384677975783im -0.0004103160086253374 - 0.04116052459238649im; … ; -0.023828013883435667 - 0.0070655125251887696im -0.01248143728365643 + 0.025889262616409038im … 0.014827675017111712 + 0.03628238456291453im 0.007812937342067165 - 0.02242340154391457im; -0.017046790325324468 + 0.04532439683148928im 0.023970119445297946 + 0.04416945274901788im … -0.07695223032137588 - 0.07474549991122754im -0.05896815065197131 + 0.00209552445669978im;;; -0.004645582167765165 - 0.01694551088019517im -0.02193679316488067 + 0.009390779662312916im … 0.0027320987591324206 + 0.008290330276932455im 0.007700164357519891 - 0.09490867128991587im; 0.09176432613149033 + 0.007681927623935228im 0.055770722067677754 - 0.015101668326170575im … -0.012810878718923719 - 0.08881358952551871im 0.016041788908715944 + 0.017615118226833593im; … ; -0.015919977026314355 + 0.019346693315040735im 0.0032056470747567345 + 0.037798470805220086im … -0.035210522384861914 - 0.04813803783170102im -0.013717702625257884 - 0.009281062285770362im; 0.01730513040923881 + 0.0025574413733914945im 0.008837941053963974 - 0.0008115650221651102im … -0.12035104647492498 + 0.013023499800986243im -0.03158543637456069 + 0.05019365400079062im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668724758 -11.100308396742097 … -8.2898457724122 -11.100308396742157; -11.100308396742097 -9.130057825947562 … -9.130057795896269 -11.10030835675912; … ; -8.2898457724122 -9.130057795896269 … -4.14958992164318 -6.287956198199085; -11.100308396742156 -11.100308356759122 … -6.287956198199086 -9.11184822357707;;; -11.100308396742099 -9.13005782594756 … -9.13005779589627 -11.100308356759122; -9.130057825947562 -6.903159481982037 … -9.130057827297243 -10.053883826551838; … ; -9.130057795896269 -9.130057827297243 … -5.294353669214257 -7.547399206521408; -11.10030835675912 -10.053883826551838 … -7.547399206521409 -10.053883826551942;;; -8.289845772412498 -6.307621931516632 … -8.289845781011453 -9.11184819352574; -6.307621931516634 -4.516655665815759 … -7.5473992376112395 -7.54739920652164; … ; -8.28984578101145 -7.5473992376112395 … -5.768969083581083 -7.5473992376113115; -9.11184819352574 -7.54739920652164 … -7.547399237611312 -9.111848224926977;;; … ;;; -5.301031718249701 -6.30762195578884 … -2.5497035732760125 -3.8495821793877685; -6.30762195578884 -6.9031594952088655 … -3.329060698546254 -4.878419358630577; … ; -2.549703573276012 -3.3290606985462543 … -1.256798470902508 -1.8141947460410766; -3.849582179387769 -4.878419358630579 … -1.8141947460410766 -2.714767335322605;;; -8.289845772412201 -9.130057795896269 … -4.149589921643181 -6.287956198199084; -9.13005779589627 -9.130057827297241 … -5.2943536692142565 -7.547399206521407; … ; -4.149589921643181 -5.294353669214257 … -1.9094492399153127 -2.894612367852227; -6.287956198199085 -7.547399206521407 … -2.8946123678522264 -4.485542759371892;;; -11.100308396742157 -11.100308356759122 … -6.287956198199086 -9.111848223577068; -11.10030835675912 -10.053883826551838 … -7.54739920652141 -10.053883826551942; … ; -6.287956198199084 -7.54739920652141 … -2.8946123678522264 -4.485542759371892; -9.11184822357707 -10.053883826551942 … -4.485542759371893 -6.871104500134954])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668724758 -11.100308396742097 … -8.2898457724122 -11.100308396742157; -11.100308396742097 -9.130057825947562 … -9.130057795896269 -11.10030835675912; … ; -8.2898457724122 -9.130057795896269 … -4.14958992164318 -6.287956198199085; -11.100308396742156 -11.100308356759122 … -6.287956198199086 -9.11184822357707;;; -11.100308396742099 -9.13005782594756 … -9.13005779589627 -11.100308356759122; -9.130057825947562 -6.903159481982037 … -9.130057827297243 -10.053883826551838; … ; -9.130057795896269 -9.130057827297243 … -5.294353669214257 -7.547399206521408; -11.10030835675912 -10.053883826551838 … -7.547399206521409 -10.053883826551942;;; -8.289845772412498 -6.307621931516632 … -8.289845781011453 -9.11184819352574; -6.307621931516634 -4.516655665815759 … -7.5473992376112395 -7.54739920652164; … ; -8.28984578101145 -7.5473992376112395 … -5.768969083581083 -7.5473992376113115; -9.11184819352574 -7.54739920652164 … -7.547399237611312 -9.111848224926977;;; … ;;; -5.301031718249701 -6.30762195578884 … -2.5497035732760125 -3.8495821793877685; -6.30762195578884 -6.9031594952088655 … -3.329060698546254 -4.878419358630577; … ; -2.549703573276012 -3.3290606985462543 … -1.256798470902508 -1.8141947460410766; -3.849582179387769 -4.878419358630579 … -1.8141947460410766 -2.714767335322605;;; -8.289845772412201 -9.130057795896269 … -4.149589921643181 -6.287956198199084; -9.13005779589627 -9.130057827297241 … -5.2943536692142565 -7.547399206521407; … ; -4.149589921643181 -5.294353669214257 … -1.9094492399153127 -2.894612367852227; -6.287956198199085 -7.547399206521407 … -2.8946123678522264 -4.485542759371892;;; -11.100308396742157 -11.100308356759122 … -6.287956198199086 -9.111848223577068; -11.10030835675912 -10.053883826551838 … -7.54739920652141 -10.053883826551942; … ; -6.287956198199084 -7.54739920652141 … -2.8946123678522264 -4.485542759371892; -9.11184822357707 -10.053883826551942 … -4.485542759371893 -6.871104500134954]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.014174836720949553 - 0.0019396483011924666im 0.0037177381313388685 - 0.007638279708141368im … 0.016266967019407535 - 0.05424042420040172im -0.017126990356867357 - 0.01206224389063193im; 0.0345980589151562 - 0.014362605321562229im 0.011351588587152692 - 0.01618475213436466im … -0.0518156449009676 - 0.036169322903470996im 0.027407871823293378 + 0.010971297640875928im; … ; 0.0042629275593631865 - 0.0012867943417808354im 0.04145001109602178 + 0.044432183621078356im … 0.021955759970744622 + 0.026664831753386235im 0.05877094639991357 - 0.03908478482938758im; 0.031839085666145475 + 0.022234334528325836im 0.036110762659466535 - 0.006357455397698893im … 0.017028900155856067 + 0.0331924851740605im 0.014539791296202566 - 0.011373008912661332im;;; 0.060166217142175495 - 0.056781943831358477im -0.019349657603703028 - 0.01335485855717952im … -0.025582697088207207 - 0.013470862605468766im 0.05349761272807483 + 0.03252584842702183im; 0.008854448795601058 + 0.05563618285504977im 0.004788780731395222 + 0.005374998186083321im … -0.0369714843237556 + 0.025691815549087497im 0.033991222623614446 + 0.00550880848486888im; … ; 0.06430695315317869 + 0.07449844245586076im 0.13959814010035915 - 0.0029409773704617975im … 0.11097836509068143 - 0.054119746955118245im 0.006713836575411367 - 0.05547327737130496im; 0.157024847802124 + 0.0055431902263453426im 0.07270137344659598 - 0.09780446745875121im … 0.02851998548980275 - 0.048181723697549986im 0.046484322097778745 + 0.06641428587986806im;;; -0.009233194238566885 - 0.009748610053724165im 0.04237560962585926 + 0.0746108478887147im … 0.05510142962026164 + 0.03800845595865252im 0.11147761845122989 - 0.05377237509395927im; 0.04943825462826196 + 0.06946078532154767im 0.06519006794087764 + 0.005268323180973295im … 0.046742791480928234 + 0.009801465493050637im 0.023522428948865186 - 0.0007094746993743586im; … ; 0.18977263802416153 + 0.010601457373096266im 0.0962860184556228 - 0.11041092733769706im … 0.01827456074694769 - 0.03864891874678963im 0.05305067081565353 + 0.070206454328684im; 0.14720002997102946 - 0.1391675380491769im -0.022592506013628954 - 0.07403828159546463im … 0.025887286442144223 + 0.038781108147645224im 0.18796328294050796 + 0.03579033009431942im;;; … ;;; 0.06505139480030885 - 0.029735337365105356im 0.02599148113687974 + 0.03152016510070038im … 0.017979495564488655 + 0.03640751458564763im 0.13152346568204532 + 0.010005821484427704im; 0.013461389452902268 + 0.018605890176863545im 0.07806230962184604 + 0.0758257578410922im … 0.12628698464826243 + 0.011738530517771004im 0.09091821432145228 - 0.0778591269548354im; … ; 0.053306398940019414 + 0.02817233289156089im 0.024472626639946687 + 0.003165015492290018im … -0.09232597104400399 + 0.1083148155303788im 0.024205561224828025 + 0.08884613980155824im; 0.04500918295547904 + 0.00501567382655678im 0.019600226472444644 + 0.013186229630738275im … 0.003303250058658766 - 0.005811490028685815im 0.03370614630588123 + 0.018691112954007758im;;; 0.024897931294422238 - 0.00633369283943782im 0.04852076604174904 + 0.03258475200562992im … -0.002968274161777796 + 0.012545004710329344im 0.04814657990926441 - 0.026466528318593387im; 0.08729143727726757 + 0.08307668342058758im 0.1290841565193133 + 0.01867406774182084im … 0.06915110084445523 - 0.07840384677975783im -0.0004103160086253374 - 0.04116052459238649im; … ; -0.023828013883435667 - 0.0070655125251887696im -0.01248143728365643 + 0.025889262616409038im … 0.014827675017111712 + 0.03628238456291453im 0.007812937342067165 - 0.02242340154391457im; -0.017046790325324468 + 0.04532439683148928im 0.023970119445297946 + 0.04416945274901788im … -0.07695223032137588 - 0.07474549991122754im -0.05896815065197131 + 0.00209552445669978im;;; -0.004645582167765165 - 0.01694551088019517im -0.02193679316488067 + 0.009390779662312916im … 0.0027320987591324206 + 0.008290330276932455im 0.007700164357519891 - 0.09490867128991587im; 0.09176432613149033 + 0.007681927623935228im 0.055770722067677754 - 0.015101668326170575im … -0.012810878718923719 - 0.08881358952551871im 0.016041788908715944 + 0.017615118226833593im; … ; -0.015919977026314355 + 0.019346693315040735im 0.0032056470747567345 + 0.037798470805220086im … -0.035210522384861914 - 0.04813803783170102im -0.013717702625257884 - 0.009281062285770362im; 0.01730513040923881 + 0.0025574413733914945im 0.008837941053963974 - 0.0008115650221651102im … -0.12035104647492498 + 0.013023499800986243im -0.03158543637456069 + 0.05019365400079062im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488507), converged = true, ρ = [7.58978454314301e-5 0.0011262712728320164 … 0.006697037550066695 0.0011262712728320333; 0.0011262712728320064 0.005274334457360288 … 0.005274334457360318 0.0011262712728320216; … ; 0.006697037550066695 0.005274334457360324 … 0.023244754191031503 0.012258986825221859; 0.00112627127283203 0.0011262712728320131 … 0.012258986825221849 0.0037700086298823317;;; 0.001126271272832008 0.005274334457360297 … 0.005274334457360329 0.0011262712728320279; 0.005274334457360288 0.014620065304712484 … 0.005274334457360318 0.002588080874842082; … ; 0.005274334457360329 0.005274334457360325 … 0.018107686646124294 0.008922003044730387; 0.0011262712728320233 0.002588080874842073 … 0.008922003044730377 0.002588080874842092;;; 0.006697037550066655 0.016412109101590338 … 0.0066970375500666895 0.003770008629882323; 0.016412109101590324 0.031277839315938284 … 0.008922003044730354 0.008922003044730339; … ; 0.006697037550066691 0.008922003044730363 … 0.01647675635943328 0.008922003044730384; 0.0037700086298823182 0.008922003044730332 … 0.008922003044730373 0.003770008629882323;;; … ;;; 0.019853839853387907 0.016412109101590355 … 0.03715667363565167 0.02719080068656409; 0.01641210910159034 0.014620065304712502 … 0.03230127212643198 0.022322100931701675; … ; 0.03715667363565167 0.032301272126431996 … 0.04629698070141405 0.042636582731414394; 0.02719080068656409 0.022322100931701668 … 0.04263658273141439 0.03477222914197769;;; 0.006697037550066664 0.005274334457360299 … 0.02324475419103147 0.01225898682522183; 0.00527433445736029 0.005274334457360295 … 0.018107686646124253 0.008922003044730351; … ; 0.023244754191031478 0.01810768664612426 … 0.04037111033554836 0.03149160381136291; 0.012258986825221828 0.008922003044730344 … 0.031491603811362893 0.02004716343271286;;; 0.0011262712728320114 0.0011262712728320173 … 0.012258986825221845 0.0037700086298823304; 0.0011262712728320097 0.0025880808748420707 … 0.008922003044730363 0.0025880808748420863; … ; 0.012258986825221845 0.008922003044730368 … 0.031491603811362914 0.020047163432712886; 0.003770008629882328 0.0025880808748420785 … 0.020047163432712876 0.008952603496746227;;;;], eigenvalues = [[-0.1783683565396469, 0.26249194499107786, 0.262491944991078, 0.26249194499107814, 0.35469214816752304, 0.3546921481675233, 0.35469214816896305], [-0.12755037617951254, 0.06475320594652853, 0.22545166517380272, 0.22545166517380327, 0.3219776496111608, 0.3892227690846772, 0.3892227690846776], [-0.1081872921654049, 0.07755003473402464, 0.17278328011438732, 0.1727832801143875, 0.28435185361970394, 0.33054764843299156, 0.5267232426392026], [-0.05777325374469563, 0.012724782205184621, 0.09766073750104481, 0.18417825332939522, 0.3152284179597894, 0.4720312334753242, 0.49791351840570414]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930539107, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.314683018102085 + 0.8959231470082256im 6.745930497999281e-14 - 1.671567621599361e-14im … 2.017292261689851e-12 - 7.440448065771687e-12im 3.538226604138255e-8 - 1.218379316038283e-7im; 0.043002923664251236 + 0.08956643204186292im -0.1541001362970721 - 0.31052765339453153im … -0.17802215733332724 + 0.13135731990810273im -0.1999702418802669 + 0.3125353738908732im; … ; 0.0038965246336199856 - 0.011093660640551641im 0.018410854244378553 - 0.040639383182866494im … 0.005117281791050302 - 0.01937269453476147im 0.07030469938590739 + 0.02879822465523125im; 0.043002923664242666 + 0.08956643204185114im 0.010836401786171687 - 0.07005342603554005im … -0.26258103591106385 - 0.013909953130584183im 0.3878795553116619 + 0.06633145492231879im], [0.7927819171906345 - 0.46922854593142205im -0.2027494079400994 + 0.010686873100004154im … 5.230861203281849e-11 - 7.376326657062672e-11im -2.1190504064757243e-11 + 4.913229966837495e-11im; 0.01553443087084308 - 0.060591593347813014im 0.006026409144166419 - 0.00669706018837534im … -7.389632997028921e-11 + 9.50006543020099e-11im -4.245408531313679e-11 - 1.9633584315383355e-11im; … ; -0.004253130772920799 + 0.0025173257928319524im 0.0844214519729604 - 0.004449834666915187im … -0.05767147813009211 + 0.021434881242893476im -0.042570941467584264 + 0.07423688899276809im; 0.029034929100400286 - 0.11324989190535749im -0.06697098921073286 + 0.07442387911111198im … -0.11330227048533266 + 0.24734469749468666im 0.09901105651498732 + 0.3652272431601025im], [-0.8984072997167062 + 0.2224319810265181im 2.535313805251249e-14 + 8.734682546117298e-15im … 2.8419622781896887e-11 + 4.775097432812364e-11im 5.179036514115516e-9 - 4.215714676286022e-9im; -0.035393876846765704 + 0.05868682830682802im 0.04979225815551534 - 0.01565940192664817im … 0.02584079145092803 + 0.002493030243416323im -0.002229987631612828 + 0.004844812797415863im; … ; 0.01028435887444186 - 0.00254625081382606im 5.92345807486004e-14 + 1.5616384040523203e-14im … 8.557611750643684e-11 + 2.6107032751399804e-10im 0.039477813138412005 - 0.037700526371295166im; -0.08275570469063191 + 0.1372177976890886im -0.27973373735948337 + 0.08797478138238524im … 0.37037496120525243 + 0.0357324963226858im 0.0028703264927258895 - 0.15563269658019857im], [-0.7026848976220795 + 0.3809898994554091im 6.400189254248835e-16 - 4.33467194025491e-15im … -0.18144420470099823 - 0.009522476799745187im 1.589987359298453e-5 + 4.10434624464591e-6im; -0.11151533329163285 + 0.3756550672672541im -0.6025112666384246 - 0.14945698459512127im … 0.13526871739933874 - 0.12177977521686603im -5.4139031395094e-6 + 3.609764080185893e-6im; … ; 0.011649082156924112 - 0.006316035330688195im 0.00013101736816308689 + 0.00021745937543788616im … 0.013032279271367046 + 0.0006832511679743863im 0.045720580703279876 - 0.0059077752875456154im; -0.019092963774031625 + 0.06431733089218446im 0.005157026482332308 + 0.0012792352113643272im … 0.10664781845427257 - 0.09603730823850284im 0.28774126996101534 - 0.3731675844900795im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.1783683565396469, 0.26249194499107786, 0.262491944991078, 0.26249194499107814, 0.35469214816752304, 0.3546921481675233, 0.35469214816896305], [-0.12755037617951254, 0.06475320594652853, 0.22545166517380272, 0.22545166517380327, 0.3219776496111608, 0.3892227690846772, 0.3892227690846776], [-0.1081872921654049, 0.07755003473402464, 0.17278328011438732, 0.1727832801143875, 0.28435185361970394, 0.33054764843299156, 0.5267232426392026], [-0.05777325374469563, 0.012724782205184621, 0.09766073750104481, 0.18417825332939522, 0.3152284179597894, 0.4720312334753242, 0.49791351840570414]], X = [[-0.314683018102085 + 0.8959231470082256im 6.745930497999281e-14 - 1.671567621599361e-14im … 2.017292261689851e-12 - 7.440448065771687e-12im 3.538226604138255e-8 - 1.218379316038283e-7im; 0.043002923664251236 + 0.08956643204186292im -0.1541001362970721 - 0.31052765339453153im … -0.17802215733332724 + 0.13135731990810273im -0.1999702418802669 + 0.3125353738908732im; … ; 0.0038965246336199856 - 0.011093660640551641im 0.018410854244378553 - 0.040639383182866494im … 0.005117281791050302 - 0.01937269453476147im 0.07030469938590739 + 0.02879822465523125im; 0.043002923664242666 + 0.08956643204185114im 0.010836401786171687 - 0.07005342603554005im … -0.26258103591106385 - 0.013909953130584183im 0.3878795553116619 + 0.06633145492231879im], [0.7927819171906345 - 0.46922854593142205im -0.2027494079400994 + 0.010686873100004154im … 5.230861203281849e-11 - 7.376326657062672e-11im -2.1190504064757243e-11 + 4.913229966837495e-11im; 0.01553443087084308 - 0.060591593347813014im 0.006026409144166419 - 0.00669706018837534im … -7.389632997028921e-11 + 9.50006543020099e-11im -4.245408531313679e-11 - 1.9633584315383355e-11im; … ; -0.004253130772920799 + 0.0025173257928319524im 0.0844214519729604 - 0.004449834666915187im … -0.05767147813009211 + 0.021434881242893476im -0.042570941467584264 + 0.07423688899276809im; 0.029034929100400286 - 0.11324989190535749im -0.06697098921073286 + 0.07442387911111198im … -0.11330227048533266 + 0.24734469749468666im 0.09901105651498732 + 0.3652272431601025im], [-0.8984072997167062 + 0.2224319810265181im 2.535313805251249e-14 + 8.734682546117298e-15im … 2.8419622781896887e-11 + 4.775097432812364e-11im 5.179036514115516e-9 - 4.215714676286022e-9im; -0.035393876846765704 + 0.05868682830682802im 0.04979225815551534 - 0.01565940192664817im … 0.02584079145092803 + 0.002493030243416323im -0.002229987631612828 + 0.004844812797415863im; … ; 0.01028435887444186 - 0.00254625081382606im 5.92345807486004e-14 + 1.5616384040523203e-14im … 8.557611750643684e-11 + 2.6107032751399804e-10im 0.039477813138412005 - 0.037700526371295166im; -0.08275570469063191 + 0.1372177976890886im -0.27973373735948337 + 0.08797478138238524im … 0.37037496120525243 + 0.0357324963226858im 0.0028703264927258895 - 0.15563269658019857im], [-0.7026848976220795 + 0.3809898994554091im 6.400189254248835e-16 - 4.33467194025491e-15im … -0.18144420470099823 - 0.009522476799745187im 1.589987359298453e-5 + 4.10434624464591e-6im; -0.11151533329163285 + 0.3756550672672541im -0.6025112666384246 - 0.14945698459512127im … 0.13526871739933874 - 0.12177977521686603im -5.4139031395094e-6 + 3.609764080185893e-6im; … ; 0.011649082156924112 - 0.006316035330688195im 0.00013101736816308689 + 0.00021745937543788616im … 0.013032279271367046 + 0.0006832511679743863im 0.045720580703279876 - 0.0059077752875456154im; -0.019092963774031625 + 0.06431733089218446im 0.005157026482332308 + 0.0012792352113643272im … 0.10664781845427257 - 0.09603730823850284im 0.28774126996101534 - 0.3731675844900795im]], residual_norms = [[0.0, 2.8333446459087764e-12, 7.612073082148677e-13, 2.498900693813529e-12, 1.8526568955478255e-10, 1.342017754844602e-10, 2.2281176391170176e-6], [0.0, 0.0, 8.212903389106337e-13, 7.486999118577293e-13, 1.5688966239297444e-10, 3.1026596947708798e-9, 3.2744677198467312e-9], [1.1962888294721823e-12, 1.988476468201353e-12, 2.0422805501630083e-12, 1.0314671144591385e-12, 4.2843192936130295e-11, 1.2871072930965505e-9, 9.225683459673025e-7], [8.147174952719169e-13, 5.833888928680361e-13, 1.752646214584856e-12, 3.368012929459799e-12, 6.023855606854198e-10, 0.00015218465325069218, 3.798787994641701e-5]], n_iter = [5, 4, 3, 3], converged = 1, n_matvec = 127)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.2107002808009498, 0.027615412045562934, 0.0023072007719482203, 0.0002577350063472001, 9.252859536399066e-6, 9.338747169640907e-7, 4.443364618200068e-8, 3.181318702104511e-9, 1.453597319770496e-10, 1.513053831232943e-11], history_Etot = [-7.905262305969499, -7.910544478630855, -7.910593450872929, -7.910594393290777, -7.910594396444694, -7.910594396488415, -7.910594396488506, -7.910594396488506, -7.9105943964885075, -7.910594396488507], occupation_threshold = 1.0e-6, seed = 0x478f77e6b2ccde71, runtime_ns = 0x00000000846fc684)