Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#780"{DFTK.var"#anderson#779#781"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.2475696687216 -11.100308396742246 … -8.28984577241243 -11.100308396742307; -11.100308396742248 -9.130057825947821 … -9.130057795896528 -11.10030835675927; … ; -8.28984577241243 -9.130057795896528 … -4.149589921643074 -6.287956198199159; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.111848223577393;;; -11.100308396742248 -9.130057825947821 … -9.130057795896532 -11.100308356759271; -9.130057825947821 -6.903159481982132 … -9.130057827297502 -10.053883826552147; … ; -9.130057795896528 -9.130057827297502 … -5.294353669214241 -7.547399206521585; -11.100308356759271 -10.053883826552147 … -7.547399206521586 -10.053883826552251;;; -8.289845772412729 -6.307621931516686 … -8.289845781011683 -9.111848193526061; -6.307621931516688 -4.51665566581566 … -7.547399237611417 -7.547399206521818; … ; -8.289845781011682 -7.547399237611416 … -5.768969083581108 -7.547399237611488; -9.11184819352606 -7.547399206521817 … -7.547399237611489 -9.111848224927298;;; … ;;; -5.301031718249678 -6.3076219557888935 … -2.54970357327582 -3.8495821793876392; -6.307621955788894 -6.9031594952089605 … -3.329060698546094 -4.878419358630521; … ; -2.5497035732758193 -3.3290606985460944 … -1.25679847090235 -1.8141947460408838; -3.849582179387638 -4.878419358630523 … -1.8141947460408834 -2.714767335322416;;; -8.289845772412432 -9.130057795896528 … -4.1495899216430745 -6.287956198199158; -9.130057795896532 -9.1300578272975 … -5.2943536692142406 -7.547399206521584; … ; -4.1495899216430745 -5.2943536692142406 … -1.9094492399151188 -2.8946123678520457; -6.287956198199159 -7.547399206521585 … -2.8946123678520452 -4.48554275937181;;; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.11184822357739; -11.10030835675927 -10.053883826552147 … -7.547399206521587 -10.053883826552251; … ; -6.287956198199158 -7.547399206521587 … -2.8946123678520452 -4.48554275937181; -9.111848223577393 -10.053883826552251 … -4.4855427593718105 -6.871104500135093])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.2475696687216 -11.100308396742246 … -8.28984577241243 -11.100308396742307; -11.100308396742248 -9.130057825947821 … -9.130057795896528 -11.10030835675927; … ; -8.28984577241243 -9.130057795896528 … -4.149589921643074 -6.287956198199159; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.111848223577393;;; -11.100308396742248 -9.130057825947821 … -9.130057795896532 -11.100308356759271; -9.130057825947821 -6.903159481982132 … -9.130057827297502 -10.053883826552147; … ; -9.130057795896528 -9.130057827297502 … -5.294353669214241 -7.547399206521585; -11.100308356759271 -10.053883826552147 … -7.547399206521586 -10.053883826552251;;; -8.289845772412729 -6.307621931516686 … -8.289845781011683 -9.111848193526061; -6.307621931516688 -4.51665566581566 … -7.547399237611417 -7.547399206521818; … ; -8.289845781011682 -7.547399237611416 … -5.768969083581108 -7.547399237611488; -9.11184819352606 -7.547399206521817 … -7.547399237611489 -9.111848224927298;;; … ;;; -5.301031718249678 -6.3076219557888935 … -2.54970357327582 -3.8495821793876392; -6.307621955788894 -6.9031594952089605 … -3.329060698546094 -4.878419358630521; … ; -2.5497035732758193 -3.3290606985460944 … -1.25679847090235 -1.8141947460408838; -3.849582179387638 -4.878419358630523 … -1.8141947460408834 -2.714767335322416;;; -8.289845772412432 -9.130057795896528 … -4.1495899216430745 -6.287956198199158; -9.130057795896532 -9.1300578272975 … -5.2943536692142406 -7.547399206521584; … ; -4.1495899216430745 -5.2943536692142406 … -1.9094492399151188 -2.8946123678520457; -6.287956198199159 -7.547399206521585 … -2.8946123678520452 -4.48554275937181;;; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.11184822357739; -11.10030835675927 -10.053883826552147 … -7.547399206521587 -10.053883826552251; … ; -6.287956198199158 -7.547399206521587 … -2.8946123678520452 -4.48554275937181; -9.111848223577393 -10.053883826552251 … -4.4855427593718105 -6.871104500135093]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.01452183202261582 + 0.03652466194533039im 0.011997800971571205 - 0.015784633236056812im … -0.013905859701814505 - 0.09485532082146608im -0.04839378650581573 + 0.018843487387607504im; 0.03836104700417105 + 0.009366923412290146im -0.025770383119591914 + 0.04947190899079432im … -0.06326289608140877 - 0.007736943269751298im 0.034828232391774024 + 0.060839764703404894im; … ; -0.009679569938503337 - 0.014914328951293548im -0.030495829590756814 + 0.012540926658267114im … 0.03086951246237213 + 0.07078136721607219im 0.03065548268545822 + 0.02233639982014768im; -0.06026305834562986 + 0.02120033529538269im -0.001976822132993641 + 0.038881370636032336im … 0.05918585311154525 - 0.025426462453231054im -0.029903990613756842 - 0.033471810507492664im;;; 0.05659611633461867 + 0.016311331010010335im 0.01740271653066348 - 0.025874212522077965im … -0.08333976562361504 + 0.11095001131706153im 0.06410476437369136 + 0.12710407900346446im; -0.06366206374206218 + 0.02344741182880599im -0.0044845271984309265 + 0.06127900920734676im … 0.04737459707456635 + 0.12049806618769812im 0.09291423573774923 - 0.005753124963947191im; … ; -0.017231012009869404 + 0.0024483410245694464im -0.0031170146375310674 + 0.043943964923714336im … 0.07547092965889693 + 0.028124861477441733im 0.02076094119363148 - 0.0017837964740407587im; 0.0003822836028641169 + 0.0736704000582977im 0.06854950995173296 + 0.03481986602920299im … -0.037290474545295105 - 0.011850408568935674im -0.048064811456198765 + 0.0943061067642979im;;; -0.022432867836370496 + 0.005531219304452491im -0.020747092641706585 - 0.029701737386373314im … 0.06054079819740671 + 0.14100698091556316im 0.08147369996924436 + 0.019195294917414528im; -0.07641816213057183 + 0.1390420465396367im -0.004766539546054299 + 0.07659661930634022im … 0.04581775138159312 - 0.0076862278212480135im -0.0989624858790023 + 0.0033300487096449864im; … ; 0.01769842789162731 + 0.07437737208563339im 0.07419587115082713 + 0.04372083946755535im … 0.0021448589822864912 + 0.007036235300384525im -0.014661159729026898 + 0.05352016644519282im; 0.09322171132179256 + 0.05338477782537448im 0.09710973440840101 - 0.049534996363267074im … -0.04723606542442077 + 0.11123434705922382im 0.05936881622951847 + 0.14024476091956065im;;; … ;;; -0.03180016514962431 - 0.0026580742560278203im -0.07534955985704728 + 0.03162338192993088im … -0.0064054748875197465 - 0.10175103252215209im -0.024230977863622775 + 0.009321702945756617im; -0.045415786159817714 + 0.034316315394247156im -0.02183006002769318 + 0.10110459038676377im … -0.011038336083608088 + 0.0031950201384181058im 0.02111017586770447 + 0.016384088173978587im; … ; -0.07070155545656662 + 0.07914428693289802im -1.7200234801065944e-5 + 0.042438118801867895im … -0.11736922769846103 - 0.0004188698958379547im -0.12454627442681167 + 0.032598773986349666im; -0.015539901838581437 + 0.03699717579737108im -0.018280485813342566 - 0.0053870330389356215im … 0.018441304090547565 - 0.039756338861820215im -0.05552123330707495 + 0.009928782320352795im;;; -0.08543829291238991 + 0.0403020908115765im -0.036865985258261194 + 0.11240995717045153im … -0.08361081008440874 - 0.10233303014098072im -0.06900343587494295 - 0.01978114603006928im; 0.0068568694454722995 + 0.07305479251613127im 0.0474682876915751 + 0.05760802665473785im … 0.042284815903472786 + 0.008347641564385557im 0.0377109868506621 - 0.012061963829783938im; … ; -0.03198255952175793 + 0.02129055395988074im -0.03426795657808639 - 0.012188736896600109im … -0.022913457625618947 - 0.016790110189363425im -0.07593386966929552 + 0.019414814158896565im; -0.09184059776954133 - 0.03370095382562597im -0.10316201588503526 + 0.026690030955039933im … -0.014209410930315431 - 0.1632387306747402im -0.07958074083381847 - 0.0559156548501031im;;; -0.00968798209680118 + 0.023641071508620246im 0.021821136795246502 + 0.0012352066079222568im … 0.029285316184551092 - 0.037904817718274135im 0.03887710418275664 - 0.06574356213416993im; 0.02275681415050553 - 0.019108039769033504im -0.03715643117620232 - 0.016575977128234207im … 0.07498341762761182 - 0.0971044834568604im 0.018406608821003277 - 0.059060592483520254im; … ; -0.0325179392117835 - 0.00603310774716961im -0.062169318910056226 + 0.008205313459117784im … -0.039918744491496634 - 0.0008234086195412701im -0.030797674529810967 + 0.04543451451247266im; -0.06633780003210361 - 0.017421052923715312im -0.05086905081515722 + 0.058634312095941485im … -0.03489462178569809 - 0.033054594118717105im -0.029436261006873625 - 0.021614047931123766im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.2475696687216 -11.100308396742246 … -8.28984577241243 -11.100308396742307; -11.100308396742248 -9.130057825947821 … -9.130057795896528 -11.10030835675927; … ; -8.28984577241243 -9.130057795896528 … -4.149589921643074 -6.287956198199159; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.111848223577393;;; -11.100308396742248 -9.130057825947821 … -9.130057795896532 -11.100308356759271; -9.130057825947821 -6.903159481982132 … -9.130057827297502 -10.053883826552147; … ; -9.130057795896528 -9.130057827297502 … -5.294353669214241 -7.547399206521585; -11.100308356759271 -10.053883826552147 … -7.547399206521586 -10.053883826552251;;; -8.289845772412729 -6.307621931516686 … -8.289845781011683 -9.111848193526061; -6.307621931516688 -4.51665566581566 … -7.547399237611417 -7.547399206521818; … ; -8.289845781011682 -7.547399237611416 … -5.768969083581108 -7.547399237611488; -9.11184819352606 -7.547399206521817 … -7.547399237611489 -9.111848224927298;;; … ;;; -5.301031718249678 -6.3076219557888935 … -2.54970357327582 -3.8495821793876392; -6.307621955788894 -6.9031594952089605 … -3.329060698546094 -4.878419358630521; … ; -2.5497035732758193 -3.3290606985460944 … -1.25679847090235 -1.8141947460408838; -3.849582179387638 -4.878419358630523 … -1.8141947460408834 -2.714767335322416;;; -8.289845772412432 -9.130057795896528 … -4.1495899216430745 -6.287956198199158; -9.130057795896532 -9.1300578272975 … -5.2943536692142406 -7.547399206521584; … ; -4.1495899216430745 -5.2943536692142406 … -1.9094492399151188 -2.8946123678520457; -6.287956198199159 -7.547399206521585 … -2.8946123678520452 -4.48554275937181;;; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.11184822357739; -11.10030835675927 -10.053883826552147 … -7.547399206521587 -10.053883826552251; … ; -6.287956198199158 -7.547399206521587 … -2.8946123678520452 -4.48554275937181; -9.111848223577393 -10.053883826552251 … -4.4855427593718105 -6.871104500135093])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.2475696687216 -11.100308396742246 … -8.28984577241243 -11.100308396742307; -11.100308396742248 -9.130057825947821 … -9.130057795896528 -11.10030835675927; … ; -8.28984577241243 -9.130057795896528 … -4.149589921643074 -6.287956198199159; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.111848223577393;;; -11.100308396742248 -9.130057825947821 … -9.130057795896532 -11.100308356759271; -9.130057825947821 -6.903159481982132 … -9.130057827297502 -10.053883826552147; … ; -9.130057795896528 -9.130057827297502 … -5.294353669214241 -7.547399206521585; -11.100308356759271 -10.053883826552147 … -7.547399206521586 -10.053883826552251;;; -8.289845772412729 -6.307621931516686 … -8.289845781011683 -9.111848193526061; -6.307621931516688 -4.51665566581566 … -7.547399237611417 -7.547399206521818; … ; -8.289845781011682 -7.547399237611416 … -5.768969083581108 -7.547399237611488; -9.11184819352606 -7.547399206521817 … -7.547399237611489 -9.111848224927298;;; … ;;; -5.301031718249678 -6.3076219557888935 … -2.54970357327582 -3.8495821793876392; -6.307621955788894 -6.9031594952089605 … -3.329060698546094 -4.878419358630521; … ; -2.5497035732758193 -3.3290606985460944 … -1.25679847090235 -1.8141947460408838; -3.849582179387638 -4.878419358630523 … -1.8141947460408834 -2.714767335322416;;; -8.289845772412432 -9.130057795896528 … -4.1495899216430745 -6.287956198199158; -9.130057795896532 -9.1300578272975 … -5.2943536692142406 -7.547399206521584; … ; -4.1495899216430745 -5.2943536692142406 … -1.9094492399151188 -2.8946123678520457; -6.287956198199159 -7.547399206521585 … -2.8946123678520452 -4.48554275937181;;; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.11184822357739; -11.10030835675927 -10.053883826552147 … -7.547399206521587 -10.053883826552251; … ; -6.287956198199158 -7.547399206521587 … -2.8946123678520452 -4.48554275937181; -9.111848223577393 -10.053883826552251 … -4.4855427593718105 -6.871104500135093]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.01452183202261582 + 0.03652466194533039im 0.011997800971571205 - 0.015784633236056812im … -0.013905859701814505 - 0.09485532082146608im -0.04839378650581573 + 0.018843487387607504im; 0.03836104700417105 + 0.009366923412290146im -0.025770383119591914 + 0.04947190899079432im … -0.06326289608140877 - 0.007736943269751298im 0.034828232391774024 + 0.060839764703404894im; … ; -0.009679569938503337 - 0.014914328951293548im -0.030495829590756814 + 0.012540926658267114im … 0.03086951246237213 + 0.07078136721607219im 0.03065548268545822 + 0.02233639982014768im; -0.06026305834562986 + 0.02120033529538269im -0.001976822132993641 + 0.038881370636032336im … 0.05918585311154525 - 0.025426462453231054im -0.029903990613756842 - 0.033471810507492664im;;; 0.05659611633461867 + 0.016311331010010335im 0.01740271653066348 - 0.025874212522077965im … -0.08333976562361504 + 0.11095001131706153im 0.06410476437369136 + 0.12710407900346446im; -0.06366206374206218 + 0.02344741182880599im -0.0044845271984309265 + 0.06127900920734676im … 0.04737459707456635 + 0.12049806618769812im 0.09291423573774923 - 0.005753124963947191im; … ; -0.017231012009869404 + 0.0024483410245694464im -0.0031170146375310674 + 0.043943964923714336im … 0.07547092965889693 + 0.028124861477441733im 0.02076094119363148 - 0.0017837964740407587im; 0.0003822836028641169 + 0.0736704000582977im 0.06854950995173296 + 0.03481986602920299im … -0.037290474545295105 - 0.011850408568935674im -0.048064811456198765 + 0.0943061067642979im;;; -0.022432867836370496 + 0.005531219304452491im -0.020747092641706585 - 0.029701737386373314im … 0.06054079819740671 + 0.14100698091556316im 0.08147369996924436 + 0.019195294917414528im; -0.07641816213057183 + 0.1390420465396367im -0.004766539546054299 + 0.07659661930634022im … 0.04581775138159312 - 0.0076862278212480135im -0.0989624858790023 + 0.0033300487096449864im; … ; 0.01769842789162731 + 0.07437737208563339im 0.07419587115082713 + 0.04372083946755535im … 0.0021448589822864912 + 0.007036235300384525im -0.014661159729026898 + 0.05352016644519282im; 0.09322171132179256 + 0.05338477782537448im 0.09710973440840101 - 0.049534996363267074im … -0.04723606542442077 + 0.11123434705922382im 0.05936881622951847 + 0.14024476091956065im;;; … ;;; -0.03180016514962431 - 0.0026580742560278203im -0.07534955985704728 + 0.03162338192993088im … -0.0064054748875197465 - 0.10175103252215209im -0.024230977863622775 + 0.009321702945756617im; -0.045415786159817714 + 0.034316315394247156im -0.02183006002769318 + 0.10110459038676377im … -0.011038336083608088 + 0.0031950201384181058im 0.02111017586770447 + 0.016384088173978587im; … ; -0.07070155545656662 + 0.07914428693289802im -1.7200234801065944e-5 + 0.042438118801867895im … -0.11736922769846103 - 0.0004188698958379547im -0.12454627442681167 + 0.032598773986349666im; -0.015539901838581437 + 0.03699717579737108im -0.018280485813342566 - 0.0053870330389356215im … 0.018441304090547565 - 0.039756338861820215im -0.05552123330707495 + 0.009928782320352795im;;; -0.08543829291238991 + 0.0403020908115765im -0.036865985258261194 + 0.11240995717045153im … -0.08361081008440874 - 0.10233303014098072im -0.06900343587494295 - 0.01978114603006928im; 0.0068568694454722995 + 0.07305479251613127im 0.0474682876915751 + 0.05760802665473785im … 0.042284815903472786 + 0.008347641564385557im 0.0377109868506621 - 0.012061963829783938im; … ; -0.03198255952175793 + 0.02129055395988074im -0.03426795657808639 - 0.012188736896600109im … -0.022913457625618947 - 0.016790110189363425im -0.07593386966929552 + 0.019414814158896565im; -0.09184059776954133 - 0.03370095382562597im -0.10316201588503526 + 0.026690030955039933im … -0.014209410930315431 - 0.1632387306747402im -0.07958074083381847 - 0.0559156548501031im;;; -0.00968798209680118 + 0.023641071508620246im 0.021821136795246502 + 0.0012352066079222568im … 0.029285316184551092 - 0.037904817718274135im 0.03887710418275664 - 0.06574356213416993im; 0.02275681415050553 - 0.019108039769033504im -0.03715643117620232 - 0.016575977128234207im … 0.07498341762761182 - 0.0971044834568604im 0.018406608821003277 - 0.059060592483520254im; … ; -0.0325179392117835 - 0.00603310774716961im -0.062169318910056226 + 0.008205313459117784im … -0.039918744491496634 - 0.0008234086195412701im -0.030797674529810967 + 0.04543451451247266im; -0.06633780003210361 - 0.017421052923715312im -0.05086905081515722 + 0.058634312095941485im … -0.03489462178569809 - 0.033054594118717105im -0.029436261006873625 - 0.021614047931123766im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.2475696687216 -11.100308396742246 … -8.28984577241243 -11.100308396742307; -11.100308396742248 -9.130057825947821 … -9.130057795896528 -11.10030835675927; … ; -8.28984577241243 -9.130057795896528 … -4.149589921643074 -6.287956198199159; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.111848223577393;;; -11.100308396742248 -9.130057825947821 … -9.130057795896532 -11.100308356759271; -9.130057825947821 -6.903159481982132 … -9.130057827297502 -10.053883826552147; … ; -9.130057795896528 -9.130057827297502 … -5.294353669214241 -7.547399206521585; -11.100308356759271 -10.053883826552147 … -7.547399206521586 -10.053883826552251;;; -8.289845772412729 -6.307621931516686 … -8.289845781011683 -9.111848193526061; -6.307621931516688 -4.51665566581566 … -7.547399237611417 -7.547399206521818; … ; -8.289845781011682 -7.547399237611416 … -5.768969083581108 -7.547399237611488; -9.11184819352606 -7.547399206521817 … -7.547399237611489 -9.111848224927298;;; … ;;; -5.301031718249678 -6.3076219557888935 … -2.54970357327582 -3.8495821793876392; -6.307621955788894 -6.9031594952089605 … -3.329060698546094 -4.878419358630521; … ; -2.5497035732758193 -3.3290606985460944 … -1.25679847090235 -1.8141947460408838; -3.849582179387638 -4.878419358630523 … -1.8141947460408834 -2.714767335322416;;; -8.289845772412432 -9.130057795896528 … -4.1495899216430745 -6.287956198199158; -9.130057795896532 -9.1300578272975 … -5.2943536692142406 -7.547399206521584; … ; -4.1495899216430745 -5.2943536692142406 … -1.9094492399151188 -2.8946123678520457; -6.287956198199159 -7.547399206521585 … -2.8946123678520452 -4.48554275937181;;; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.11184822357739; -11.10030835675927 -10.053883826552147 … -7.547399206521587 -10.053883826552251; … ; -6.287956198199158 -7.547399206521587 … -2.8946123678520452 -4.48554275937181; -9.111848223577393 -10.053883826552251 … -4.4855427593718105 -6.871104500135093])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.2475696687216 -11.100308396742246 … -8.28984577241243 -11.100308396742307; -11.100308396742248 -9.130057825947821 … -9.130057795896528 -11.10030835675927; … ; -8.28984577241243 -9.130057795896528 … -4.149589921643074 -6.287956198199159; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.111848223577393;;; -11.100308396742248 -9.130057825947821 … -9.130057795896532 -11.100308356759271; -9.130057825947821 -6.903159481982132 … -9.130057827297502 -10.053883826552147; … ; -9.130057795896528 -9.130057827297502 … -5.294353669214241 -7.547399206521585; -11.100308356759271 -10.053883826552147 … -7.547399206521586 -10.053883826552251;;; -8.289845772412729 -6.307621931516686 … -8.289845781011683 -9.111848193526061; -6.307621931516688 -4.51665566581566 … -7.547399237611417 -7.547399206521818; … ; -8.289845781011682 -7.547399237611416 … -5.768969083581108 -7.547399237611488; -9.11184819352606 -7.547399206521817 … -7.547399237611489 -9.111848224927298;;; … ;;; -5.301031718249678 -6.3076219557888935 … -2.54970357327582 -3.8495821793876392; -6.307621955788894 -6.9031594952089605 … -3.329060698546094 -4.878419358630521; … ; -2.5497035732758193 -3.3290606985460944 … -1.25679847090235 -1.8141947460408838; -3.849582179387638 -4.878419358630523 … -1.8141947460408834 -2.714767335322416;;; -8.289845772412432 -9.130057795896528 … -4.1495899216430745 -6.287956198199158; -9.130057795896532 -9.1300578272975 … -5.2943536692142406 -7.547399206521584; … ; -4.1495899216430745 -5.2943536692142406 … -1.9094492399151188 -2.8946123678520457; -6.287956198199159 -7.547399206521585 … -2.8946123678520452 -4.48554275937181;;; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.11184822357739; -11.10030835675927 -10.053883826552147 … -7.547399206521587 -10.053883826552251; … ; -6.287956198199158 -7.547399206521587 … -2.8946123678520452 -4.48554275937181; -9.111848223577393 -10.053883826552251 … -4.4855427593718105 -6.871104500135093]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.01452183202261582 + 0.03652466194533039im 0.011997800971571205 - 0.015784633236056812im … -0.013905859701814505 - 0.09485532082146608im -0.04839378650581573 + 0.018843487387607504im; 0.03836104700417105 + 0.009366923412290146im -0.025770383119591914 + 0.04947190899079432im … -0.06326289608140877 - 0.007736943269751298im 0.034828232391774024 + 0.060839764703404894im; … ; -0.009679569938503337 - 0.014914328951293548im -0.030495829590756814 + 0.012540926658267114im … 0.03086951246237213 + 0.07078136721607219im 0.03065548268545822 + 0.02233639982014768im; -0.06026305834562986 + 0.02120033529538269im -0.001976822132993641 + 0.038881370636032336im … 0.05918585311154525 - 0.025426462453231054im -0.029903990613756842 - 0.033471810507492664im;;; 0.05659611633461867 + 0.016311331010010335im 0.01740271653066348 - 0.025874212522077965im … -0.08333976562361504 + 0.11095001131706153im 0.06410476437369136 + 0.12710407900346446im; -0.06366206374206218 + 0.02344741182880599im -0.0044845271984309265 + 0.06127900920734676im … 0.04737459707456635 + 0.12049806618769812im 0.09291423573774923 - 0.005753124963947191im; … ; -0.017231012009869404 + 0.0024483410245694464im -0.0031170146375310674 + 0.043943964923714336im … 0.07547092965889693 + 0.028124861477441733im 0.02076094119363148 - 0.0017837964740407587im; 0.0003822836028641169 + 0.0736704000582977im 0.06854950995173296 + 0.03481986602920299im … -0.037290474545295105 - 0.011850408568935674im -0.048064811456198765 + 0.0943061067642979im;;; -0.022432867836370496 + 0.005531219304452491im -0.020747092641706585 - 0.029701737386373314im … 0.06054079819740671 + 0.14100698091556316im 0.08147369996924436 + 0.019195294917414528im; -0.07641816213057183 + 0.1390420465396367im -0.004766539546054299 + 0.07659661930634022im … 0.04581775138159312 - 0.0076862278212480135im -0.0989624858790023 + 0.0033300487096449864im; … ; 0.01769842789162731 + 0.07437737208563339im 0.07419587115082713 + 0.04372083946755535im … 0.0021448589822864912 + 0.007036235300384525im -0.014661159729026898 + 0.05352016644519282im; 0.09322171132179256 + 0.05338477782537448im 0.09710973440840101 - 0.049534996363267074im … -0.04723606542442077 + 0.11123434705922382im 0.05936881622951847 + 0.14024476091956065im;;; … ;;; -0.03180016514962431 - 0.0026580742560278203im -0.07534955985704728 + 0.03162338192993088im … -0.0064054748875197465 - 0.10175103252215209im -0.024230977863622775 + 0.009321702945756617im; -0.045415786159817714 + 0.034316315394247156im -0.02183006002769318 + 0.10110459038676377im … -0.011038336083608088 + 0.0031950201384181058im 0.02111017586770447 + 0.016384088173978587im; … ; -0.07070155545656662 + 0.07914428693289802im -1.7200234801065944e-5 + 0.042438118801867895im … -0.11736922769846103 - 0.0004188698958379547im -0.12454627442681167 + 0.032598773986349666im; -0.015539901838581437 + 0.03699717579737108im -0.018280485813342566 - 0.0053870330389356215im … 0.018441304090547565 - 0.039756338861820215im -0.05552123330707495 + 0.009928782320352795im;;; -0.08543829291238991 + 0.0403020908115765im -0.036865985258261194 + 0.11240995717045153im … -0.08361081008440874 - 0.10233303014098072im -0.06900343587494295 - 0.01978114603006928im; 0.0068568694454722995 + 0.07305479251613127im 0.0474682876915751 + 0.05760802665473785im … 0.042284815903472786 + 0.008347641564385557im 0.0377109868506621 - 0.012061963829783938im; … ; -0.03198255952175793 + 0.02129055395988074im -0.03426795657808639 - 0.012188736896600109im … -0.022913457625618947 - 0.016790110189363425im -0.07593386966929552 + 0.019414814158896565im; -0.09184059776954133 - 0.03370095382562597im -0.10316201588503526 + 0.026690030955039933im … -0.014209410930315431 - 0.1632387306747402im -0.07958074083381847 - 0.0559156548501031im;;; -0.00968798209680118 + 0.023641071508620246im 0.021821136795246502 + 0.0012352066079222568im … 0.029285316184551092 - 0.037904817718274135im 0.03887710418275664 - 0.06574356213416993im; 0.02275681415050553 - 0.019108039769033504im -0.03715643117620232 - 0.016575977128234207im … 0.07498341762761182 - 0.0971044834568604im 0.018406608821003277 - 0.059060592483520254im; … ; -0.0325179392117835 - 0.00603310774716961im -0.062169318910056226 + 0.008205313459117784im … -0.039918744491496634 - 0.0008234086195412701im -0.030797674529810967 + 0.04543451451247266im; -0.06633780003210361 - 0.017421052923715312im -0.05086905081515722 + 0.058634312095941485im … -0.03489462178569809 - 0.033054594118717105im -0.029436261006873625 - 0.021614047931123766im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.2475696687216 -11.100308396742246 … -8.28984577241243 -11.100308396742307; -11.100308396742248 -9.130057825947821 … -9.130057795896528 -11.10030835675927; … ; -8.28984577241243 -9.130057795896528 … -4.149589921643074 -6.287956198199159; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.111848223577393;;; -11.100308396742248 -9.130057825947821 … -9.130057795896532 -11.100308356759271; -9.130057825947821 -6.903159481982132 … -9.130057827297502 -10.053883826552147; … ; -9.130057795896528 -9.130057827297502 … -5.294353669214241 -7.547399206521585; -11.100308356759271 -10.053883826552147 … -7.547399206521586 -10.053883826552251;;; -8.289845772412729 -6.307621931516686 … -8.289845781011683 -9.111848193526061; -6.307621931516688 -4.51665566581566 … -7.547399237611417 -7.547399206521818; … ; -8.289845781011682 -7.547399237611416 … -5.768969083581108 -7.547399237611488; -9.11184819352606 -7.547399206521817 … -7.547399237611489 -9.111848224927298;;; … ;;; -5.301031718249678 -6.3076219557888935 … -2.54970357327582 -3.8495821793876392; -6.307621955788894 -6.9031594952089605 … -3.329060698546094 -4.878419358630521; … ; -2.5497035732758193 -3.3290606985460944 … -1.25679847090235 -1.8141947460408838; -3.849582179387638 -4.878419358630523 … -1.8141947460408834 -2.714767335322416;;; -8.289845772412432 -9.130057795896528 … -4.1495899216430745 -6.287956198199158; -9.130057795896532 -9.1300578272975 … -5.2943536692142406 -7.547399206521584; … ; -4.1495899216430745 -5.2943536692142406 … -1.9094492399151188 -2.8946123678520457; -6.287956198199159 -7.547399206521585 … -2.8946123678520452 -4.48554275937181;;; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.11184822357739; -11.10030835675927 -10.053883826552147 … -7.547399206521587 -10.053883826552251; … ; -6.287956198199158 -7.547399206521587 … -2.8946123678520452 -4.48554275937181; -9.111848223577393 -10.053883826552251 … -4.4855427593718105 -6.871104500135093])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.2475696687216 -11.100308396742246 … -8.28984577241243 -11.100308396742307; -11.100308396742248 -9.130057825947821 … -9.130057795896528 -11.10030835675927; … ; -8.28984577241243 -9.130057795896528 … -4.149589921643074 -6.287956198199159; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.111848223577393;;; -11.100308396742248 -9.130057825947821 … -9.130057795896532 -11.100308356759271; -9.130057825947821 -6.903159481982132 … -9.130057827297502 -10.053883826552147; … ; -9.130057795896528 -9.130057827297502 … -5.294353669214241 -7.547399206521585; -11.100308356759271 -10.053883826552147 … -7.547399206521586 -10.053883826552251;;; -8.289845772412729 -6.307621931516686 … -8.289845781011683 -9.111848193526061; -6.307621931516688 -4.51665566581566 … -7.547399237611417 -7.547399206521818; … ; -8.289845781011682 -7.547399237611416 … -5.768969083581108 -7.547399237611488; -9.11184819352606 -7.547399206521817 … -7.547399237611489 -9.111848224927298;;; … ;;; -5.301031718249678 -6.3076219557888935 … -2.54970357327582 -3.8495821793876392; -6.307621955788894 -6.9031594952089605 … -3.329060698546094 -4.878419358630521; … ; -2.5497035732758193 -3.3290606985460944 … -1.25679847090235 -1.8141947460408838; -3.849582179387638 -4.878419358630523 … -1.8141947460408834 -2.714767335322416;;; -8.289845772412432 -9.130057795896528 … -4.1495899216430745 -6.287956198199158; -9.130057795896532 -9.1300578272975 … -5.2943536692142406 -7.547399206521584; … ; -4.1495899216430745 -5.2943536692142406 … -1.9094492399151188 -2.8946123678520457; -6.287956198199159 -7.547399206521585 … -2.8946123678520452 -4.48554275937181;;; -11.100308396742307 -11.100308356759271 … -6.28795619819916 -9.11184822357739; -11.10030835675927 -10.053883826552147 … -7.547399206521587 -10.053883826552251; … ; -6.287956198199158 -7.547399206521587 … -2.8946123678520452 -4.48554275937181; -9.111848223577393 -10.053883826552251 … -4.4855427593718105 -6.871104500135093]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.01452183202261582 + 0.03652466194533039im 0.011997800971571205 - 0.015784633236056812im … -0.013905859701814505 - 0.09485532082146608im -0.04839378650581573 + 0.018843487387607504im; 0.03836104700417105 + 0.009366923412290146im -0.025770383119591914 + 0.04947190899079432im … -0.06326289608140877 - 0.007736943269751298im 0.034828232391774024 + 0.060839764703404894im; … ; -0.009679569938503337 - 0.014914328951293548im -0.030495829590756814 + 0.012540926658267114im … 0.03086951246237213 + 0.07078136721607219im 0.03065548268545822 + 0.02233639982014768im; -0.06026305834562986 + 0.02120033529538269im -0.001976822132993641 + 0.038881370636032336im … 0.05918585311154525 - 0.025426462453231054im -0.029903990613756842 - 0.033471810507492664im;;; 0.05659611633461867 + 0.016311331010010335im 0.01740271653066348 - 0.025874212522077965im … -0.08333976562361504 + 0.11095001131706153im 0.06410476437369136 + 0.12710407900346446im; -0.06366206374206218 + 0.02344741182880599im -0.0044845271984309265 + 0.06127900920734676im … 0.04737459707456635 + 0.12049806618769812im 0.09291423573774923 - 0.005753124963947191im; … ; -0.017231012009869404 + 0.0024483410245694464im -0.0031170146375310674 + 0.043943964923714336im … 0.07547092965889693 + 0.028124861477441733im 0.02076094119363148 - 0.0017837964740407587im; 0.0003822836028641169 + 0.0736704000582977im 0.06854950995173296 + 0.03481986602920299im … -0.037290474545295105 - 0.011850408568935674im -0.048064811456198765 + 0.0943061067642979im;;; -0.022432867836370496 + 0.005531219304452491im -0.020747092641706585 - 0.029701737386373314im … 0.06054079819740671 + 0.14100698091556316im 0.08147369996924436 + 0.019195294917414528im; -0.07641816213057183 + 0.1390420465396367im -0.004766539546054299 + 0.07659661930634022im … 0.04581775138159312 - 0.0076862278212480135im -0.0989624858790023 + 0.0033300487096449864im; … ; 0.01769842789162731 + 0.07437737208563339im 0.07419587115082713 + 0.04372083946755535im … 0.0021448589822864912 + 0.007036235300384525im -0.014661159729026898 + 0.05352016644519282im; 0.09322171132179256 + 0.05338477782537448im 0.09710973440840101 - 0.049534996363267074im … -0.04723606542442077 + 0.11123434705922382im 0.05936881622951847 + 0.14024476091956065im;;; … ;;; -0.03180016514962431 - 0.0026580742560278203im -0.07534955985704728 + 0.03162338192993088im … -0.0064054748875197465 - 0.10175103252215209im -0.024230977863622775 + 0.009321702945756617im; -0.045415786159817714 + 0.034316315394247156im -0.02183006002769318 + 0.10110459038676377im … -0.011038336083608088 + 0.0031950201384181058im 0.02111017586770447 + 0.016384088173978587im; … ; -0.07070155545656662 + 0.07914428693289802im -1.7200234801065944e-5 + 0.042438118801867895im … -0.11736922769846103 - 0.0004188698958379547im -0.12454627442681167 + 0.032598773986349666im; -0.015539901838581437 + 0.03699717579737108im -0.018280485813342566 - 0.0053870330389356215im … 0.018441304090547565 - 0.039756338861820215im -0.05552123330707495 + 0.009928782320352795im;;; -0.08543829291238991 + 0.0403020908115765im -0.036865985258261194 + 0.11240995717045153im … -0.08361081008440874 - 0.10233303014098072im -0.06900343587494295 - 0.01978114603006928im; 0.0068568694454722995 + 0.07305479251613127im 0.0474682876915751 + 0.05760802665473785im … 0.042284815903472786 + 0.008347641564385557im 0.0377109868506621 - 0.012061963829783938im; … ; -0.03198255952175793 + 0.02129055395988074im -0.03426795657808639 - 0.012188736896600109im … -0.022913457625618947 - 0.016790110189363425im -0.07593386966929552 + 0.019414814158896565im; -0.09184059776954133 - 0.03370095382562597im -0.10316201588503526 + 0.026690030955039933im … -0.014209410930315431 - 0.1632387306747402im -0.07958074083381847 - 0.0559156548501031im;;; -0.00968798209680118 + 0.023641071508620246im 0.021821136795246502 + 0.0012352066079222568im … 0.029285316184551092 - 0.037904817718274135im 0.03887710418275664 - 0.06574356213416993im; 0.02275681415050553 - 0.019108039769033504im -0.03715643117620232 - 0.016575977128234207im … 0.07498341762761182 - 0.0971044834568604im 0.018406608821003277 - 0.059060592483520254im; … ; -0.0325179392117835 - 0.00603310774716961im -0.062169318910056226 + 0.008205313459117784im … -0.039918744491496634 - 0.0008234086195412701im -0.030797674529810967 + 0.04543451451247266im; -0.06633780003210361 - 0.017421052923715312im -0.05086905081515722 + 0.058634312095941485im … -0.03489462178569809 - 0.033054594118717105im -0.029436261006873625 - 0.021614047931123766im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488504), converged = true, ρ = [7.589784541952057e-5 0.0011262712728465774 … 0.006697037550124304 0.0011262712728465842; 0.0011262712728465994 0.005274334457411798 … 0.005274334457411819 0.0011262712728465976; … ; 0.006697037550124319 0.005274334457411828 … 0.023244754191078777 0.012258986825283511; 0.0011262712728466043 0.001126271272846591 … 0.012258986825283504 0.003770008629927179;;; 0.0011262712728465946 0.0052743344574117815 … 0.00527433445741182 0.0011262712728465796; 0.0052743344574118015 0.014620065304786755 … 0.005274334457411819 0.0025880808748761247; … ; 0.0052743344574118336 0.005274334457411826 … 0.01810768664618555 0.008922003044793552; 0.0011262712728466013 0.0025880808748761173 … 0.008922003044793545 0.0025880808748761333;;; 0.006697037550124279 0.016412109101662138 … 0.006697037550124295 0.003770008629927152; 0.016412109101662162 0.031277839315999055 … 0.008922003044793517 0.008922003044793512; … ; 0.006697037550124311 0.008922003044793523 … 0.016476756359499117 0.008922003044793549; 0.003770008629927173 0.008922003044793505 … 0.008922003044793545 0.0037700086299271695;;; … ;;; 0.019853839853451207 0.01641210910166216 … 0.037156673635677734 0.027190800686609062; 0.016412109101662187 0.014620065304786762 … 0.03230127212647133 0.02232210093176196; … ; 0.03715667363567775 0.03230127212647134 … 0.04629698070143657 0.04263658273143373; 0.027190800686609087 0.022322100931761953 … 0.04263658273143373 0.03477222914200511;;; 0.0066970375501242884 0.0052743344574117884 … 0.023244754191078743 0.012258986825283463; 0.005274334457411811 0.0052743344574118 … 0.01810768664618551 0.008922003044793524; … ; 0.023244754191078753 0.018107686646185516 … 0.040371110335568 0.031491603811392224; 0.012258986825283487 0.008922003044793516 … 0.03149160381139222 0.02004716343276181;;; 0.0011262712728465974 0.0011262712728465753 … 0.012258986825283483 0.003770008629927154; 0.001126271272846596 0.00258808087487612 … 0.00892200304479353 0.00258808087487613; … ; 0.012258986825283497 0.008922003044793536 … 0.03149160381139223 0.020047163432761833; 0.0037700086299271764 0.0025880808748761207 … 0.020047163432761826 0.00895260349680422;;;;], eigenvalues = [[-0.17836835653948138, 0.2624919449912158, 0.2624919449912157, 0.26249194499121564, 0.3546921481676026, 0.3546921481676026, 0.354692148167604], [-0.1275503761793607, 0.06475320594668486, 0.22545166517392656, 0.2254516651739265, 0.32197764961130776, 0.38922276908479725, 0.3892227690847971], [-0.10818729216525494, 0.07755003473413521, 0.17278328011452593, 0.17278328011452593, 0.28435185361993875, 0.3305476484332502, 0.526723242639513], [-0.05777325374456905, 0.012724782205312975, 0.09766073750124955, 0.18417825332952825, 0.3152284179600225, 0.4720312367898374, 0.49791351870694445]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993055772, n_iter = 10, ψ = Matrix{ComplexF64}[[0.8833777774316086 + 0.34834952212789966im -6.5917276371671e-14 - 4.9789585700181284e-14im … 6.840091656094558e-10 + 9.398019715412741e-10im -1.0060571136624309e-8 - 1.3809182820322992e-8im; 0.0911290745493623 - 0.03958394831472213im 0.307388118534731 + 0.28963327063186967im … 0.2068784164933359 + 0.043389789264698234im -0.23244436719201733 - 0.2907360678988718im; … ; -0.010938319110187089 - 0.0043133960716860995im -0.015141763763284223 + 0.03166925159964481im … -0.06601185032484375 - 0.007390147891664779im -0.04510519199867785 + 0.06294856841258555im; 0.0911290745493783 - 0.03958394831471675im -0.20086781590637848 + 0.012065546039929662im … -0.22852045881269414 + 0.39111633371843546im -0.12660273392604718 + 0.35020678529482735im], [-0.08299319001657837 + 0.9174915405343205im 0.1754925184435273 + 0.1020975398677689im … -8.737688366762042e-11 - 8.963222281664947e-11im -4.565014623112475e-11 + 1.0906069814361234e-10im; 0.040065899754085615 + 0.0480352308603969im -0.00871003429750585 + 0.0023029383132486237im … -1.2804832710959488e-10 - 1.2379511809515494e-11im -1.6117909304347487e-10 - 2.774672408439678e-10im; … ; 0.00044524336739549056 - 0.004922175216533676im -0.07307214047095593 - 0.04251170272748254im … 0.06731695707384515 - 0.044803952287843195im 0.060415173633567444 - 0.030329758022215256im; 0.07488594647432195 + 0.08978117923653435im 0.09679389484099106 - 0.025592364082962022im … 0.07039222051897864 - 0.35057248022298815im 0.09406914899953228 - 0.2837354397959911im], [-0.7309059991443069 - 0.5677922884139652im -1.5173512791012667e-14 + 1.0138276414804823e-14im … -1.3444796101048032e-11 + 6.195997182417004e-11im -9.875244991768065e-9 - 1.8769071017787838e-8im; -0.06799947569095437 + 0.00854058784394929im 0.021965454331480276 - 0.047349811583028686im … -0.014628982382466339 - 0.021446552113750145im 0.0052022255916543535 + 0.002730081439067709im; … ; 0.008366917322550502 + 0.006499701930363468im 6.994092738533648e-14 - 1.1792783440603955e-14im … 1.4367092362929148e-10 - 8.567771266417129e-11im 0.042718580842955135 - 0.03344729141087309im; -0.15899203564968947 + 0.019969057601634907im -0.12340228904172647 + 0.26601203174979926im … -0.20967657846036145 - 0.307392510801708im 0.020644344308814136 - 0.1542818575933741im], [-0.7955388462920525 + 0.07770014718930135im -1.7642754191744022e-14 - 2.2353901596330426e-14im … 0.15164923497853494 - 0.10012413478285818im 1.783982827878878e-5 - 1.482953715465597e-5im; -0.24883825435986576 + 0.30270765152181683im -0.4331950055320983 - 0.4446338986766829im … -0.036498777902714594 + 0.17833736936726874im 5.927839549975023e-7 + 7.737017446442647e-6im; … ; 0.013188411207884259 - 0.0012881099355552587im -3.3079782134593735e-6 + 0.0002538566288763645im … -0.010889951473359302 + 0.007182514401781209im 0.040658838181667024 + 0.021728056190920112im; -0.042604542674551445 + 0.051827726771179514im 0.003707811354429067 + 0.0038057193572348966im … -0.02883462200513167 + 0.14066675945809085im 0.45095543691644585 - 0.1367760547022647im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653948138, 0.2624919449912158, 0.2624919449912157, 0.26249194499121564, 0.3546921481676026, 0.3546921481676026, 0.354692148167604], [-0.1275503761793607, 0.06475320594668486, 0.22545166517392656, 0.2254516651739265, 0.32197764961130776, 0.38922276908479725, 0.3892227690847971], [-0.10818729216525494, 0.07755003473413521, 0.17278328011452593, 0.17278328011452593, 0.28435185361993875, 0.3305476484332502, 0.526723242639513], [-0.05777325374456905, 0.012724782205312975, 0.09766073750124955, 0.18417825332952825, 0.3152284179600225, 0.4720312367898374, 0.49791351870694445]], X = [[0.8833777774316086 + 0.34834952212789966im -6.5917276371671e-14 - 4.9789585700181284e-14im … 6.840091656094558e-10 + 9.398019715412741e-10im -1.0060571136624309e-8 - 1.3809182820322992e-8im; 0.0911290745493623 - 0.03958394831472213im 0.307388118534731 + 0.28963327063186967im … 0.2068784164933359 + 0.043389789264698234im -0.23244436719201733 - 0.2907360678988718im; … ; -0.010938319110187089 - 0.0043133960716860995im -0.015141763763284223 + 0.03166925159964481im … -0.06601185032484375 - 0.007390147891664779im -0.04510519199867785 + 0.06294856841258555im; 0.0911290745493783 - 0.03958394831471675im -0.20086781590637848 + 0.012065546039929662im … -0.22852045881269414 + 0.39111633371843546im -0.12660273392604718 + 0.35020678529482735im], [-0.08299319001657837 + 0.9174915405343205im 0.1754925184435273 + 0.1020975398677689im … -8.737688366762042e-11 - 8.963222281664947e-11im -4.565014623112475e-11 + 1.0906069814361234e-10im; 0.040065899754085615 + 0.0480352308603969im -0.00871003429750585 + 0.0023029383132486237im … -1.2804832710959488e-10 - 1.2379511809515494e-11im -1.6117909304347487e-10 - 2.774672408439678e-10im; … ; 0.00044524336739549056 - 0.004922175216533676im -0.07307214047095593 - 0.04251170272748254im … 0.06731695707384515 - 0.044803952287843195im 0.060415173633567444 - 0.030329758022215256im; 0.07488594647432195 + 0.08978117923653435im 0.09679389484099106 - 0.025592364082962022im … 0.07039222051897864 - 0.35057248022298815im 0.09406914899953228 - 0.2837354397959911im], [-0.7309059991443069 - 0.5677922884139652im -1.5173512791012667e-14 + 1.0138276414804823e-14im … -1.3444796101048032e-11 + 6.195997182417004e-11im -9.875244991768065e-9 - 1.8769071017787838e-8im; -0.06799947569095437 + 0.00854058784394929im 0.021965454331480276 - 0.047349811583028686im … -0.014628982382466339 - 0.021446552113750145im 0.0052022255916543535 + 0.002730081439067709im; … ; 0.008366917322550502 + 0.006499701930363468im 6.994092738533648e-14 - 1.1792783440603955e-14im … 1.4367092362929148e-10 - 8.567771266417129e-11im 0.042718580842955135 - 0.03344729141087309im; -0.15899203564968947 + 0.019969057601634907im -0.12340228904172647 + 0.26601203174979926im … -0.20967657846036145 - 0.307392510801708im 0.020644344308814136 - 0.1542818575933741im], [-0.7955388462920525 + 0.07770014718930135im -1.7642754191744022e-14 - 2.2353901596330426e-14im … 0.15164923497853494 - 0.10012413478285818im 1.783982827878878e-5 - 1.482953715465597e-5im; -0.24883825435986576 + 0.30270765152181683im -0.4331950055320983 - 0.4446338986766829im … -0.036498777902714594 + 0.17833736936726874im 5.927839549975023e-7 + 7.737017446442647e-6im; … ; 0.013188411207884259 - 0.0012881099355552587im -3.3079782134593735e-6 + 0.0002538566288763645im … -0.010889951473359302 + 0.007182514401781209im 0.040658838181667024 + 0.021728056190920112im; -0.042604542674551445 + 0.051827726771179514im 0.003707811354429067 + 0.0038057193572348966im … -0.02883462200513167 + 0.14066675945809085im 0.45095543691644585 - 0.1367760547022647im]], residual_norms = [[2.589856493825085e-12, 1.0747506132691727e-12, 3.5749992801661913e-12, 5.701352759734517e-12, 1.291065270373232e-9, 4.138508963349388e-9, 6.084254002220422e-8], [3.685248615180121e-12, 3.922181186764907e-12, 4.042320688520827e-12, 4.2251618264279456e-12, 5.858723444562208e-10, 1.3431867267467506e-8, 1.4536344034599975e-8], [1.1040486675606047e-12, 1.9498499887632375e-12, 1.5906218432261994e-12, 2.078667518546058e-12, 5.488707404383117e-11, 1.6061303229036462e-9, 1.0925612170623255e-6], [4.8046259655563185e-12, 3.4477591919094613e-12, 5.185394418899005e-12, 3.2275572863312876e-12, 6.579511970588398e-10, 0.00010923053271366083, 3.8604413883316195e-5]], n_iter = [5, 3, 3, 3], converged = 1, n_matvec = 117)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21069669641111816, 0.027607500301143624, 0.0023076819670468703, 0.00025824703881498077, 9.379536147112009e-6, 9.456780125542391e-7, 4.4159676745299124e-8, 2.866074031996804e-9, 2.162117168079482e-10, 2.996607634521391e-11], history_Etot = [-7.905264456763913, -7.910544493293999, -7.91059345081793, -7.910594393165086, -7.910594396447698, -7.91059439648842, -7.910594396488504, -7.910594396488504, -7.910594396488506, -7.910594396488504], occupation_threshold = 1.0e-6, runtime_ns = 0x000000009c21cba9)