Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model
. Values up to1e-2
atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solver
toself_consistent_field
, e.g.solver = scf_anderson_solver(; m=15)
(::DFTK.var"#anderson#782"{DFTK.var"#anderson#781#783"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)
All keyword arguments are passed through to
DFTK.AndersonAcceleration
.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiff
parameter of theAdaptiveDiagtol
algorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBands
algorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
AdaptiveBands(4, 7, 1.0e-6, 0.01)
Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptive
instead ofself_consistent_field
:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668727808 -11.100308396743326 … -8.289845772413278 -11.100308396743387; -11.100308396743326 -9.130057825948652 … -9.13005779589736 -11.10030835676035; … ; -8.289845772413278 -9.13005779589736 … -4.149589921644287 -6.287956198200181; -11.100308396743385 -11.100308356760351 … -6.287956198200182 -9.11184822357813;;; -11.100308396743328 -9.13005782594865 … -9.130057795897361 -11.100308356760351; -9.130057825948652 -6.903159481983149 … -9.130057827298334 -10.053883826552939; … ; -9.13005779589736 -9.130057827298334 … -5.294353669215371 -7.547399206522495; -11.10030835676035 -10.053883826552939 … -7.5473992065224955 -10.053883826553044;;; -8.289845772413576 -6.307621931517748 … -8.28984578101253 -9.1118481935268; -6.30762193151775 -4.516655665816923 … -7.547399237612327 -7.547399206522727; … ; -8.289845781012529 -7.547399237612326 … -5.768969083582197 -7.547399237612398; -9.111848193526798 -7.5473992065227264 … -7.547399237612399 -9.111848224928037;;; … ;;; -5.301031718250822 -6.307621955789957 … -2.5497035732770694 -3.849582179388881; -6.307621955789957 -6.903159495209978 … -3.3290606985473605 -4.878419358631701; … ; -2.5497035732770685 -3.329060698547361 … -1.2567984709033375 -1.8141947460420402; -3.84958217938888 -4.878419358631703 … -1.8141947460420398 -2.7147673353236668;;; -8.28984577241328 -9.13005779589736 … -4.149589921644288 -6.28795619820018; -9.130057795897361 -9.130057827298332 … -5.29435366921537 -7.547399206522494; … ; -4.149589921644288 -5.294353669215371 … -1.909449239916281 -2.8946123678532896; -6.287956198200181 -7.547399206522495 … -2.894612367853289 -4.485542759372996;;; -11.100308396743387 -11.100308356760351 … -6.287956198200182 -9.111848223578129; -11.10030835676035 -10.053883826552939 … -7.547399206522496 -10.053883826553044; … ; -6.28795619820018 -7.547399206522496 … -2.894612367853289 -4.485542759372996; -9.11184822357813 -10.053883826553044 … -4.485542759372997 -6.871104500136035])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668727808 -11.100308396743326 … -8.289845772413278 -11.100308396743387; -11.100308396743326 -9.130057825948652 … -9.13005779589736 -11.10030835676035; … ; -8.289845772413278 -9.13005779589736 … -4.149589921644287 -6.287956198200181; -11.100308396743385 -11.100308356760351 … -6.287956198200182 -9.11184822357813;;; -11.100308396743328 -9.13005782594865 … -9.130057795897361 -11.100308356760351; -9.130057825948652 -6.903159481983149 … -9.130057827298334 -10.053883826552939; … ; -9.13005779589736 -9.130057827298334 … -5.294353669215371 -7.547399206522495; -11.10030835676035 -10.053883826552939 … -7.5473992065224955 -10.053883826553044;;; -8.289845772413576 -6.307621931517748 … -8.28984578101253 -9.1118481935268; -6.30762193151775 -4.516655665816923 … -7.547399237612327 -7.547399206522727; … ; -8.289845781012529 -7.547399237612326 … -5.768969083582197 -7.547399237612398; -9.111848193526798 -7.5473992065227264 … -7.547399237612399 -9.111848224928037;;; … ;;; -5.301031718250822 -6.307621955789957 … -2.5497035732770694 -3.849582179388881; -6.307621955789957 -6.903159495209978 … -3.3290606985473605 -4.878419358631701; … ; -2.5497035732770685 -3.329060698547361 … -1.2567984709033375 -1.8141947460420402; -3.84958217938888 -4.878419358631703 … -1.8141947460420398 -2.7147673353236668;;; -8.28984577241328 -9.13005779589736 … -4.149589921644288 -6.28795619820018; -9.130057795897361 -9.130057827298332 … -5.29435366921537 -7.547399206522494; … ; -4.149589921644288 -5.294353669215371 … -1.909449239916281 -2.8946123678532896; -6.287956198200181 -7.547399206522495 … -2.894612367853289 -4.485542759372996;;; -11.100308396743387 -11.100308356760351 … -6.287956198200182 -9.111848223578129; -11.10030835676035 -10.053883826552939 … -7.547399206522496 -10.053883826553044; … ; -6.28795619820018 -7.547399206522496 … -2.894612367853289 -4.485542759372996; -9.11184822357813 -10.053883826553044 … -4.485542759372997 -6.871104500136035]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.09234870875191732 + 0.030255233272287553im -0.06163568611673095 + 0.10899254977541842im … -0.11020480849597313 - 0.02594458152157289im -0.05833838705590559 + 0.04295900060917448im; -0.05916340737487452 + 0.03614222073495764im 0.005073864066858421 + 0.06728594873677791im … -0.02408290552990284 - 0.010144022974631926im -0.026565325392927285 + 0.019129762807645993im; … ; 0.0001653317613965451 + 0.046204213317836945im 0.006984092142203562 + 0.023498602548112285im … -0.04652699458348635 + 0.08589834964631393im 0.02151653704509013 + 0.0520123492802665im; -0.041023288985183634 + 0.0445316006429135im -0.059976438060530414 + 0.021089596796657575im … -0.044072749507951633 - 0.0628871723827128im -0.08682094817171764 + 0.003832437421092648im;;; -0.0482085115922644 + 0.032807254262115185im 0.017366055968453642 + 0.04771940822633616im … -0.08457291931775557 - 0.017098836242935476im -0.0675768169543227 + 0.00021503274746719273im; -0.055016850374920795 + 0.05502432281627347im 0.04490795520109919 - 0.004088390547656626im … -0.08147414647026387 - 0.0481700581864373im -0.08355544013440103 - 0.008291940826842394im; … ; -0.04562849324874331 + 0.022415394821877002im -0.018474301610063033 + 0.011571061162261264im … -0.024546503855727167 + 0.0365118535528717im -0.03306185224057401 - 0.013939290371161941im; -0.06769829343488525 + 0.05264537028727419im -0.020026841652159764 + 0.06542837321788453im … -0.08322718854713927 - 0.03850961470905566im -0.12124016049186624 + 0.016855409477266263im;;; -0.05355314819027498 + 0.01703434242821461im -0.0032342504469328875 - 0.029235386834360246im … -0.13941940747081813 - 0.011383488176227986im -0.09273920489379885 + 0.015261053385771458im; -0.052285272138528176 + 0.010360668929107796im -0.07341826681326613 - 0.021710329325289875im … -0.11329798958146708 + 0.021444349404681897im -0.08243859864450541 + 0.008019745125319042im; … ; -0.05281144391996144 + 0.021197844460592814im -0.030990674049726327 + 0.02796025890698971im … -0.017889374113360154 - 0.0028347751626228487im -0.07020187493517469 - 0.01369389936933748im; -0.05308269052413182 + 0.043948579244555405im 0.00037897464152110427 + 0.03752209733559754im … -0.09452577849544619 - 0.039932279208573694im -0.1163366793952666 + 0.02856852112526318im;;; … ;;; -0.08030727763479291 + 0.038759313480602825im -0.05404772818762872 - 0.028083780859551228im … -0.06781628698573207 + 0.017082139648732772im -0.08563231095928561 + 0.023251596588291706im; -0.06257820290290117 - 0.020761466339521122im -0.1061766638060389 - 0.023109296955726354im … -0.018594571042757232 - 0.005037434185561055im -0.04173321111003992 + 0.00203988378538688im; … ; -0.09791096659895583 + 0.006788067291978634im -0.05738439849179871 + 0.008567780655486391im … -0.05720472093324132 - 0.04340500789053059im -0.11128391979712986 + 0.0100811263837986im; -0.13397339420426127 + 0.02814318762337876im -0.05788363957554751 + 0.013745431475358885im … -0.13788220792938993 - 0.04115802887847852im -0.1231449050252734 + 0.019796171461619175im;;; -0.06886806201518708 + 0.0348159842222303im -0.10903613437775418 - 0.06211486582632442im … -0.006959149827375527 - 0.019984545992086947im -0.09196236762653189 - 0.0027096051824210734im; -0.08788468992288848 - 0.01315054149092716im -0.14896026398524623 + 0.01965403863439615im … -0.02760749261029241 - 0.029940788697361314im -0.05722616047374919 + 0.004238118162489181im; … ; -0.08772585720653879 + 0.05848591636703373im -0.046808581434360785 + 0.03055909075267833im … -0.13930640474630052 - 0.008295043760016205im -0.09056902563326838 + 0.09269716711240847im; -0.12114664342754185 + 0.09017736816614795im -0.03761842929919752 + 0.01125692572510745im … -0.09202205202034486 + 0.054144364112537265im -0.10365139409434437 + 0.04276906166612809im;;; -0.04835462473985759 - 0.008289421702177748im -0.17905653641229136 - 0.0025893958376845723im … -0.06948554632976967 - 0.062135547787566366im -0.08703851646967244 + 0.03082394323624287im; -0.08423295160864822 + 0.016462331150717262im -0.10460179438509243 + 0.10035105883746469im … -0.024661498099889132 + 0.019603534944734154im -0.02480499453669171 + 0.018140930110291113im; … ; -0.014701787765360502 + 0.0909404056046768im -0.0007312565223765582 + 0.04343462304105461im … -0.11917831518965456 + 0.09985519377288057im -0.02769024615056537 + 0.1318822633201272im; -0.030735981961907452 + 0.09313072775917346im -0.03668641528812629 - 0.02588380259271195im … -0.02092034759355345 + 0.026285110664983763im -0.04998418377905757 + 0.008048841086650858im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668727808 -11.100308396743326 … -8.289845772413278 -11.100308396743387; -11.100308396743326 -9.130057825948652 … -9.13005779589736 -11.10030835676035; … ; -8.289845772413278 -9.13005779589736 … -4.149589921644287 -6.287956198200181; -11.100308396743385 -11.100308356760351 … -6.287956198200182 -9.11184822357813;;; -11.100308396743328 -9.13005782594865 … -9.130057795897361 -11.100308356760351; -9.130057825948652 -6.903159481983149 … -9.130057827298334 -10.053883826552939; … ; -9.13005779589736 -9.130057827298334 … -5.294353669215371 -7.547399206522495; -11.10030835676035 -10.053883826552939 … -7.5473992065224955 -10.053883826553044;;; -8.289845772413576 -6.307621931517748 … -8.28984578101253 -9.1118481935268; -6.30762193151775 -4.516655665816923 … -7.547399237612327 -7.547399206522727; … ; -8.289845781012529 -7.547399237612326 … -5.768969083582197 -7.547399237612398; -9.111848193526798 -7.5473992065227264 … -7.547399237612399 -9.111848224928037;;; … ;;; -5.301031718250822 -6.307621955789957 … -2.5497035732770694 -3.849582179388881; -6.307621955789957 -6.903159495209978 … -3.3290606985473605 -4.878419358631701; … ; -2.5497035732770685 -3.329060698547361 … -1.2567984709033375 -1.8141947460420402; -3.84958217938888 -4.878419358631703 … -1.8141947460420398 -2.7147673353236668;;; -8.28984577241328 -9.13005779589736 … -4.149589921644288 -6.28795619820018; -9.130057795897361 -9.130057827298332 … -5.29435366921537 -7.547399206522494; … ; -4.149589921644288 -5.294353669215371 … -1.909449239916281 -2.8946123678532896; -6.287956198200181 -7.547399206522495 … -2.894612367853289 -4.485542759372996;;; -11.100308396743387 -11.100308356760351 … -6.287956198200182 -9.111848223578129; -11.10030835676035 -10.053883826552939 … -7.547399206522496 -10.053883826553044; … ; -6.28795619820018 -7.547399206522496 … -2.894612367853289 -4.485542759372996; -9.11184822357813 -10.053883826553044 … -4.485542759372997 -6.871104500136035])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668727808 -11.100308396743326 … -8.289845772413278 -11.100308396743387; -11.100308396743326 -9.130057825948652 … -9.13005779589736 -11.10030835676035; … ; -8.289845772413278 -9.13005779589736 … -4.149589921644287 -6.287956198200181; -11.100308396743385 -11.100308356760351 … -6.287956198200182 -9.11184822357813;;; -11.100308396743328 -9.13005782594865 … -9.130057795897361 -11.100308356760351; -9.130057825948652 -6.903159481983149 … -9.130057827298334 -10.053883826552939; … ; -9.13005779589736 -9.130057827298334 … -5.294353669215371 -7.547399206522495; -11.10030835676035 -10.053883826552939 … -7.5473992065224955 -10.053883826553044;;; -8.289845772413576 -6.307621931517748 … -8.28984578101253 -9.1118481935268; -6.30762193151775 -4.516655665816923 … -7.547399237612327 -7.547399206522727; … ; -8.289845781012529 -7.547399237612326 … -5.768969083582197 -7.547399237612398; -9.111848193526798 -7.5473992065227264 … -7.547399237612399 -9.111848224928037;;; … ;;; -5.301031718250822 -6.307621955789957 … -2.5497035732770694 -3.849582179388881; -6.307621955789957 -6.903159495209978 … -3.3290606985473605 -4.878419358631701; … ; -2.5497035732770685 -3.329060698547361 … -1.2567984709033375 -1.8141947460420402; -3.84958217938888 -4.878419358631703 … -1.8141947460420398 -2.7147673353236668;;; -8.28984577241328 -9.13005779589736 … -4.149589921644288 -6.28795619820018; -9.130057795897361 -9.130057827298332 … -5.29435366921537 -7.547399206522494; … ; -4.149589921644288 -5.294353669215371 … -1.909449239916281 -2.8946123678532896; -6.287956198200181 -7.547399206522495 … -2.894612367853289 -4.485542759372996;;; -11.100308396743387 -11.100308356760351 … -6.287956198200182 -9.111848223578129; -11.10030835676035 -10.053883826552939 … -7.547399206522496 -10.053883826553044; … ; -6.28795619820018 -7.547399206522496 … -2.894612367853289 -4.485542759372996; -9.11184822357813 -10.053883826553044 … -4.485542759372997 -6.871104500136035]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.09234870875191732 + 0.030255233272287553im -0.06163568611673095 + 0.10899254977541842im … -0.11020480849597313 - 0.02594458152157289im -0.05833838705590559 + 0.04295900060917448im; -0.05916340737487452 + 0.03614222073495764im 0.005073864066858421 + 0.06728594873677791im … -0.02408290552990284 - 0.010144022974631926im -0.026565325392927285 + 0.019129762807645993im; … ; 0.0001653317613965451 + 0.046204213317836945im 0.006984092142203562 + 0.023498602548112285im … -0.04652699458348635 + 0.08589834964631393im 0.02151653704509013 + 0.0520123492802665im; -0.041023288985183634 + 0.0445316006429135im -0.059976438060530414 + 0.021089596796657575im … -0.044072749507951633 - 0.0628871723827128im -0.08682094817171764 + 0.003832437421092648im;;; -0.0482085115922644 + 0.032807254262115185im 0.017366055968453642 + 0.04771940822633616im … -0.08457291931775557 - 0.017098836242935476im -0.0675768169543227 + 0.00021503274746719273im; -0.055016850374920795 + 0.05502432281627347im 0.04490795520109919 - 0.004088390547656626im … -0.08147414647026387 - 0.0481700581864373im -0.08355544013440103 - 0.008291940826842394im; … ; -0.04562849324874331 + 0.022415394821877002im -0.018474301610063033 + 0.011571061162261264im … -0.024546503855727167 + 0.0365118535528717im -0.03306185224057401 - 0.013939290371161941im; -0.06769829343488525 + 0.05264537028727419im -0.020026841652159764 + 0.06542837321788453im … -0.08322718854713927 - 0.03850961470905566im -0.12124016049186624 + 0.016855409477266263im;;; -0.05355314819027498 + 0.01703434242821461im -0.0032342504469328875 - 0.029235386834360246im … -0.13941940747081813 - 0.011383488176227986im -0.09273920489379885 + 0.015261053385771458im; -0.052285272138528176 + 0.010360668929107796im -0.07341826681326613 - 0.021710329325289875im … -0.11329798958146708 + 0.021444349404681897im -0.08243859864450541 + 0.008019745125319042im; … ; -0.05281144391996144 + 0.021197844460592814im -0.030990674049726327 + 0.02796025890698971im … -0.017889374113360154 - 0.0028347751626228487im -0.07020187493517469 - 0.01369389936933748im; -0.05308269052413182 + 0.043948579244555405im 0.00037897464152110427 + 0.03752209733559754im … -0.09452577849544619 - 0.039932279208573694im -0.1163366793952666 + 0.02856852112526318im;;; … ;;; -0.08030727763479291 + 0.038759313480602825im -0.05404772818762872 - 0.028083780859551228im … -0.06781628698573207 + 0.017082139648732772im -0.08563231095928561 + 0.023251596588291706im; -0.06257820290290117 - 0.020761466339521122im -0.1061766638060389 - 0.023109296955726354im … -0.018594571042757232 - 0.005037434185561055im -0.04173321111003992 + 0.00203988378538688im; … ; -0.09791096659895583 + 0.006788067291978634im -0.05738439849179871 + 0.008567780655486391im … -0.05720472093324132 - 0.04340500789053059im -0.11128391979712986 + 0.0100811263837986im; -0.13397339420426127 + 0.02814318762337876im -0.05788363957554751 + 0.013745431475358885im … -0.13788220792938993 - 0.04115802887847852im -0.1231449050252734 + 0.019796171461619175im;;; -0.06886806201518708 + 0.0348159842222303im -0.10903613437775418 - 0.06211486582632442im … -0.006959149827375527 - 0.019984545992086947im -0.09196236762653189 - 0.0027096051824210734im; -0.08788468992288848 - 0.01315054149092716im -0.14896026398524623 + 0.01965403863439615im … -0.02760749261029241 - 0.029940788697361314im -0.05722616047374919 + 0.004238118162489181im; … ; -0.08772585720653879 + 0.05848591636703373im -0.046808581434360785 + 0.03055909075267833im … -0.13930640474630052 - 0.008295043760016205im -0.09056902563326838 + 0.09269716711240847im; -0.12114664342754185 + 0.09017736816614795im -0.03761842929919752 + 0.01125692572510745im … -0.09202205202034486 + 0.054144364112537265im -0.10365139409434437 + 0.04276906166612809im;;; -0.04835462473985759 - 0.008289421702177748im -0.17905653641229136 - 0.0025893958376845723im … -0.06948554632976967 - 0.062135547787566366im -0.08703851646967244 + 0.03082394323624287im; -0.08423295160864822 + 0.016462331150717262im -0.10460179438509243 + 0.10035105883746469im … -0.024661498099889132 + 0.019603534944734154im -0.02480499453669171 + 0.018140930110291113im; … ; -0.014701787765360502 + 0.0909404056046768im -0.0007312565223765582 + 0.04343462304105461im … -0.11917831518965456 + 0.09985519377288057im -0.02769024615056537 + 0.1318822633201272im; -0.030735981961907452 + 0.09313072775917346im -0.03668641528812629 - 0.02588380259271195im … -0.02092034759355345 + 0.026285110664983763im -0.04998418377905757 + 0.008048841086650858im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668727808 -11.100308396743326 … -8.289845772413278 -11.100308396743387; -11.100308396743326 -9.130057825948652 … -9.13005779589736 -11.10030835676035; … ; -8.289845772413278 -9.13005779589736 … -4.149589921644287 -6.287956198200181; -11.100308396743385 -11.100308356760351 … -6.287956198200182 -9.11184822357813;;; -11.100308396743328 -9.13005782594865 … -9.130057795897361 -11.100308356760351; -9.130057825948652 -6.903159481983149 … -9.130057827298334 -10.053883826552939; … ; -9.13005779589736 -9.130057827298334 … -5.294353669215371 -7.547399206522495; -11.10030835676035 -10.053883826552939 … -7.5473992065224955 -10.053883826553044;;; -8.289845772413576 -6.307621931517748 … -8.28984578101253 -9.1118481935268; -6.30762193151775 -4.516655665816923 … -7.547399237612327 -7.547399206522727; … ; -8.289845781012529 -7.547399237612326 … -5.768969083582197 -7.547399237612398; -9.111848193526798 -7.5473992065227264 … -7.547399237612399 -9.111848224928037;;; … ;;; -5.301031718250822 -6.307621955789957 … -2.5497035732770694 -3.849582179388881; -6.307621955789957 -6.903159495209978 … -3.3290606985473605 -4.878419358631701; … ; -2.5497035732770685 -3.329060698547361 … -1.2567984709033375 -1.8141947460420402; -3.84958217938888 -4.878419358631703 … -1.8141947460420398 -2.7147673353236668;;; -8.28984577241328 -9.13005779589736 … -4.149589921644288 -6.28795619820018; -9.130057795897361 -9.130057827298332 … -5.29435366921537 -7.547399206522494; … ; -4.149589921644288 -5.294353669215371 … -1.909449239916281 -2.8946123678532896; -6.287956198200181 -7.547399206522495 … -2.894612367853289 -4.485542759372996;;; -11.100308396743387 -11.100308356760351 … -6.287956198200182 -9.111848223578129; -11.10030835676035 -10.053883826552939 … -7.547399206522496 -10.053883826553044; … ; -6.28795619820018 -7.547399206522496 … -2.894612367853289 -4.485542759372996; -9.11184822357813 -10.053883826553044 … -4.485542759372997 -6.871104500136035])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668727808 -11.100308396743326 … -8.289845772413278 -11.100308396743387; -11.100308396743326 -9.130057825948652 … -9.13005779589736 -11.10030835676035; … ; -8.289845772413278 -9.13005779589736 … -4.149589921644287 -6.287956198200181; -11.100308396743385 -11.100308356760351 … -6.287956198200182 -9.11184822357813;;; -11.100308396743328 -9.13005782594865 … -9.130057795897361 -11.100308356760351; -9.130057825948652 -6.903159481983149 … -9.130057827298334 -10.053883826552939; … ; -9.13005779589736 -9.130057827298334 … -5.294353669215371 -7.547399206522495; -11.10030835676035 -10.053883826552939 … -7.5473992065224955 -10.053883826553044;;; -8.289845772413576 -6.307621931517748 … -8.28984578101253 -9.1118481935268; -6.30762193151775 -4.516655665816923 … -7.547399237612327 -7.547399206522727; … ; -8.289845781012529 -7.547399237612326 … -5.768969083582197 -7.547399237612398; -9.111848193526798 -7.5473992065227264 … -7.547399237612399 -9.111848224928037;;; … ;;; -5.301031718250822 -6.307621955789957 … -2.5497035732770694 -3.849582179388881; -6.307621955789957 -6.903159495209978 … -3.3290606985473605 -4.878419358631701; … ; -2.5497035732770685 -3.329060698547361 … -1.2567984709033375 -1.8141947460420402; -3.84958217938888 -4.878419358631703 … -1.8141947460420398 -2.7147673353236668;;; -8.28984577241328 -9.13005779589736 … -4.149589921644288 -6.28795619820018; -9.130057795897361 -9.130057827298332 … -5.29435366921537 -7.547399206522494; … ; -4.149589921644288 -5.294353669215371 … -1.909449239916281 -2.8946123678532896; -6.287956198200181 -7.547399206522495 … -2.894612367853289 -4.485542759372996;;; -11.100308396743387 -11.100308356760351 … -6.287956198200182 -9.111848223578129; -11.10030835676035 -10.053883826552939 … -7.547399206522496 -10.053883826553044; … ; -6.28795619820018 -7.547399206522496 … -2.894612367853289 -4.485542759372996; -9.11184822357813 -10.053883826553044 … -4.485542759372997 -6.871104500136035]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.09234870875191732 + 0.030255233272287553im -0.06163568611673095 + 0.10899254977541842im … -0.11020480849597313 - 0.02594458152157289im -0.05833838705590559 + 0.04295900060917448im; -0.05916340737487452 + 0.03614222073495764im 0.005073864066858421 + 0.06728594873677791im … -0.02408290552990284 - 0.010144022974631926im -0.026565325392927285 + 0.019129762807645993im; … ; 0.0001653317613965451 + 0.046204213317836945im 0.006984092142203562 + 0.023498602548112285im … -0.04652699458348635 + 0.08589834964631393im 0.02151653704509013 + 0.0520123492802665im; -0.041023288985183634 + 0.0445316006429135im -0.059976438060530414 + 0.021089596796657575im … -0.044072749507951633 - 0.0628871723827128im -0.08682094817171764 + 0.003832437421092648im;;; -0.0482085115922644 + 0.032807254262115185im 0.017366055968453642 + 0.04771940822633616im … -0.08457291931775557 - 0.017098836242935476im -0.0675768169543227 + 0.00021503274746719273im; -0.055016850374920795 + 0.05502432281627347im 0.04490795520109919 - 0.004088390547656626im … -0.08147414647026387 - 0.0481700581864373im -0.08355544013440103 - 0.008291940826842394im; … ; -0.04562849324874331 + 0.022415394821877002im -0.018474301610063033 + 0.011571061162261264im … -0.024546503855727167 + 0.0365118535528717im -0.03306185224057401 - 0.013939290371161941im; -0.06769829343488525 + 0.05264537028727419im -0.020026841652159764 + 0.06542837321788453im … -0.08322718854713927 - 0.03850961470905566im -0.12124016049186624 + 0.016855409477266263im;;; -0.05355314819027498 + 0.01703434242821461im -0.0032342504469328875 - 0.029235386834360246im … -0.13941940747081813 - 0.011383488176227986im -0.09273920489379885 + 0.015261053385771458im; -0.052285272138528176 + 0.010360668929107796im -0.07341826681326613 - 0.021710329325289875im … -0.11329798958146708 + 0.021444349404681897im -0.08243859864450541 + 0.008019745125319042im; … ; -0.05281144391996144 + 0.021197844460592814im -0.030990674049726327 + 0.02796025890698971im … -0.017889374113360154 - 0.0028347751626228487im -0.07020187493517469 - 0.01369389936933748im; -0.05308269052413182 + 0.043948579244555405im 0.00037897464152110427 + 0.03752209733559754im … -0.09452577849544619 - 0.039932279208573694im -0.1163366793952666 + 0.02856852112526318im;;; … ;;; -0.08030727763479291 + 0.038759313480602825im -0.05404772818762872 - 0.028083780859551228im … -0.06781628698573207 + 0.017082139648732772im -0.08563231095928561 + 0.023251596588291706im; -0.06257820290290117 - 0.020761466339521122im -0.1061766638060389 - 0.023109296955726354im … -0.018594571042757232 - 0.005037434185561055im -0.04173321111003992 + 0.00203988378538688im; … ; -0.09791096659895583 + 0.006788067291978634im -0.05738439849179871 + 0.008567780655486391im … -0.05720472093324132 - 0.04340500789053059im -0.11128391979712986 + 0.0100811263837986im; -0.13397339420426127 + 0.02814318762337876im -0.05788363957554751 + 0.013745431475358885im … -0.13788220792938993 - 0.04115802887847852im -0.1231449050252734 + 0.019796171461619175im;;; -0.06886806201518708 + 0.0348159842222303im -0.10903613437775418 - 0.06211486582632442im … -0.006959149827375527 - 0.019984545992086947im -0.09196236762653189 - 0.0027096051824210734im; -0.08788468992288848 - 0.01315054149092716im -0.14896026398524623 + 0.01965403863439615im … -0.02760749261029241 - 0.029940788697361314im -0.05722616047374919 + 0.004238118162489181im; … ; -0.08772585720653879 + 0.05848591636703373im -0.046808581434360785 + 0.03055909075267833im … -0.13930640474630052 - 0.008295043760016205im -0.09056902563326838 + 0.09269716711240847im; -0.12114664342754185 + 0.09017736816614795im -0.03761842929919752 + 0.01125692572510745im … -0.09202205202034486 + 0.054144364112537265im -0.10365139409434437 + 0.04276906166612809im;;; -0.04835462473985759 - 0.008289421702177748im -0.17905653641229136 - 0.0025893958376845723im … -0.06948554632976967 - 0.062135547787566366im -0.08703851646967244 + 0.03082394323624287im; -0.08423295160864822 + 0.016462331150717262im -0.10460179438509243 + 0.10035105883746469im … -0.024661498099889132 + 0.019603534944734154im -0.02480499453669171 + 0.018140930110291113im; … ; -0.014701787765360502 + 0.0909404056046768im -0.0007312565223765582 + 0.04343462304105461im … -0.11917831518965456 + 0.09985519377288057im -0.02769024615056537 + 0.1318822633201272im; -0.030735981961907452 + 0.09313072775917346im -0.03668641528812629 - 0.02588380259271195im … -0.02092034759355345 + 0.026285110664983763im -0.04998418377905757 + 0.008048841086650858im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668727808 -11.100308396743326 … -8.289845772413278 -11.100308396743387; -11.100308396743326 -9.130057825948652 … -9.13005779589736 -11.10030835676035; … ; -8.289845772413278 -9.13005779589736 … -4.149589921644287 -6.287956198200181; -11.100308396743385 -11.100308356760351 … -6.287956198200182 -9.11184822357813;;; -11.100308396743328 -9.13005782594865 … -9.130057795897361 -11.100308356760351; -9.130057825948652 -6.903159481983149 … -9.130057827298334 -10.053883826552939; … ; -9.13005779589736 -9.130057827298334 … -5.294353669215371 -7.547399206522495; -11.10030835676035 -10.053883826552939 … -7.5473992065224955 -10.053883826553044;;; -8.289845772413576 -6.307621931517748 … -8.28984578101253 -9.1118481935268; -6.30762193151775 -4.516655665816923 … -7.547399237612327 -7.547399206522727; … ; -8.289845781012529 -7.547399237612326 … -5.768969083582197 -7.547399237612398; -9.111848193526798 -7.5473992065227264 … -7.547399237612399 -9.111848224928037;;; … ;;; -5.301031718250822 -6.307621955789957 … -2.5497035732770694 -3.849582179388881; -6.307621955789957 -6.903159495209978 … -3.3290606985473605 -4.878419358631701; … ; -2.5497035732770685 -3.329060698547361 … -1.2567984709033375 -1.8141947460420402; -3.84958217938888 -4.878419358631703 … -1.8141947460420398 -2.7147673353236668;;; -8.28984577241328 -9.13005779589736 … -4.149589921644288 -6.28795619820018; -9.130057795897361 -9.130057827298332 … -5.29435366921537 -7.547399206522494; … ; -4.149589921644288 -5.294353669215371 … -1.909449239916281 -2.8946123678532896; -6.287956198200181 -7.547399206522495 … -2.894612367853289 -4.485542759372996;;; -11.100308396743387 -11.100308356760351 … -6.287956198200182 -9.111848223578129; -11.10030835676035 -10.053883826552939 … -7.547399206522496 -10.053883826553044; … ; -6.28795619820018 -7.547399206522496 … -2.894612367853289 -4.485542759372996; -9.11184822357813 -10.053883826553044 … -4.485542759372997 -6.871104500136035])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668727808 -11.100308396743326 … -8.289845772413278 -11.100308396743387; -11.100308396743326 -9.130057825948652 … -9.13005779589736 -11.10030835676035; … ; -8.289845772413278 -9.13005779589736 … -4.149589921644287 -6.287956198200181; -11.100308396743385 -11.100308356760351 … -6.287956198200182 -9.11184822357813;;; -11.100308396743328 -9.13005782594865 … -9.130057795897361 -11.100308356760351; -9.130057825948652 -6.903159481983149 … -9.130057827298334 -10.053883826552939; … ; -9.13005779589736 -9.130057827298334 … -5.294353669215371 -7.547399206522495; -11.10030835676035 -10.053883826552939 … -7.5473992065224955 -10.053883826553044;;; -8.289845772413576 -6.307621931517748 … -8.28984578101253 -9.1118481935268; -6.30762193151775 -4.516655665816923 … -7.547399237612327 -7.547399206522727; … ; -8.289845781012529 -7.547399237612326 … -5.768969083582197 -7.547399237612398; -9.111848193526798 -7.5473992065227264 … -7.547399237612399 -9.111848224928037;;; … ;;; -5.301031718250822 -6.307621955789957 … -2.5497035732770694 -3.849582179388881; -6.307621955789957 -6.903159495209978 … -3.3290606985473605 -4.878419358631701; … ; -2.5497035732770685 -3.329060698547361 … -1.2567984709033375 -1.8141947460420402; -3.84958217938888 -4.878419358631703 … -1.8141947460420398 -2.7147673353236668;;; -8.28984577241328 -9.13005779589736 … -4.149589921644288 -6.28795619820018; -9.130057795897361 -9.130057827298332 … -5.29435366921537 -7.547399206522494; … ; -4.149589921644288 -5.294353669215371 … -1.909449239916281 -2.8946123678532896; -6.287956198200181 -7.547399206522495 … -2.894612367853289 -4.485542759372996;;; -11.100308396743387 -11.100308356760351 … -6.287956198200182 -9.111848223578129; -11.10030835676035 -10.053883826552939 … -7.547399206522496 -10.053883826553044; … ; -6.28795619820018 -7.547399206522496 … -2.894612367853289 -4.485542759372996; -9.11184822357813 -10.053883826553044 … -4.485542759372997 -6.871104500136035]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.09234870875191732 + 0.030255233272287553im -0.06163568611673095 + 0.10899254977541842im … -0.11020480849597313 - 0.02594458152157289im -0.05833838705590559 + 0.04295900060917448im; -0.05916340737487452 + 0.03614222073495764im 0.005073864066858421 + 0.06728594873677791im … -0.02408290552990284 - 0.010144022974631926im -0.026565325392927285 + 0.019129762807645993im; … ; 0.0001653317613965451 + 0.046204213317836945im 0.006984092142203562 + 0.023498602548112285im … -0.04652699458348635 + 0.08589834964631393im 0.02151653704509013 + 0.0520123492802665im; -0.041023288985183634 + 0.0445316006429135im -0.059976438060530414 + 0.021089596796657575im … -0.044072749507951633 - 0.0628871723827128im -0.08682094817171764 + 0.003832437421092648im;;; -0.0482085115922644 + 0.032807254262115185im 0.017366055968453642 + 0.04771940822633616im … -0.08457291931775557 - 0.017098836242935476im -0.0675768169543227 + 0.00021503274746719273im; -0.055016850374920795 + 0.05502432281627347im 0.04490795520109919 - 0.004088390547656626im … -0.08147414647026387 - 0.0481700581864373im -0.08355544013440103 - 0.008291940826842394im; … ; -0.04562849324874331 + 0.022415394821877002im -0.018474301610063033 + 0.011571061162261264im … -0.024546503855727167 + 0.0365118535528717im -0.03306185224057401 - 0.013939290371161941im; -0.06769829343488525 + 0.05264537028727419im -0.020026841652159764 + 0.06542837321788453im … -0.08322718854713927 - 0.03850961470905566im -0.12124016049186624 + 0.016855409477266263im;;; -0.05355314819027498 + 0.01703434242821461im -0.0032342504469328875 - 0.029235386834360246im … -0.13941940747081813 - 0.011383488176227986im -0.09273920489379885 + 0.015261053385771458im; -0.052285272138528176 + 0.010360668929107796im -0.07341826681326613 - 0.021710329325289875im … -0.11329798958146708 + 0.021444349404681897im -0.08243859864450541 + 0.008019745125319042im; … ; -0.05281144391996144 + 0.021197844460592814im -0.030990674049726327 + 0.02796025890698971im … -0.017889374113360154 - 0.0028347751626228487im -0.07020187493517469 - 0.01369389936933748im; -0.05308269052413182 + 0.043948579244555405im 0.00037897464152110427 + 0.03752209733559754im … -0.09452577849544619 - 0.039932279208573694im -0.1163366793952666 + 0.02856852112526318im;;; … ;;; -0.08030727763479291 + 0.038759313480602825im -0.05404772818762872 - 0.028083780859551228im … -0.06781628698573207 + 0.017082139648732772im -0.08563231095928561 + 0.023251596588291706im; -0.06257820290290117 - 0.020761466339521122im -0.1061766638060389 - 0.023109296955726354im … -0.018594571042757232 - 0.005037434185561055im -0.04173321111003992 + 0.00203988378538688im; … ; -0.09791096659895583 + 0.006788067291978634im -0.05738439849179871 + 0.008567780655486391im … -0.05720472093324132 - 0.04340500789053059im -0.11128391979712986 + 0.0100811263837986im; -0.13397339420426127 + 0.02814318762337876im -0.05788363957554751 + 0.013745431475358885im … -0.13788220792938993 - 0.04115802887847852im -0.1231449050252734 + 0.019796171461619175im;;; -0.06886806201518708 + 0.0348159842222303im -0.10903613437775418 - 0.06211486582632442im … -0.006959149827375527 - 0.019984545992086947im -0.09196236762653189 - 0.0027096051824210734im; -0.08788468992288848 - 0.01315054149092716im -0.14896026398524623 + 0.01965403863439615im … -0.02760749261029241 - 0.029940788697361314im -0.05722616047374919 + 0.004238118162489181im; … ; -0.08772585720653879 + 0.05848591636703373im -0.046808581434360785 + 0.03055909075267833im … -0.13930640474630052 - 0.008295043760016205im -0.09056902563326838 + 0.09269716711240847im; -0.12114664342754185 + 0.09017736816614795im -0.03761842929919752 + 0.01125692572510745im … -0.09202205202034486 + 0.054144364112537265im -0.10365139409434437 + 0.04276906166612809im;;; -0.04835462473985759 - 0.008289421702177748im -0.17905653641229136 - 0.0025893958376845723im … -0.06948554632976967 - 0.062135547787566366im -0.08703851646967244 + 0.03082394323624287im; -0.08423295160864822 + 0.016462331150717262im -0.10460179438509243 + 0.10035105883746469im … -0.024661498099889132 + 0.019603534944734154im -0.02480499453669171 + 0.018140930110291113im; … ; -0.014701787765360502 + 0.0909404056046768im -0.0007312565223765582 + 0.04343462304105461im … -0.11917831518965456 + 0.09985519377288057im -0.02769024615056537 + 0.1318822633201272im; -0.030735981961907452 + 0.09313072775917346im -0.03668641528812629 - 0.02588380259271195im … -0.02092034759355345 + 0.026285110664983763im -0.04998418377905757 + 0.008048841086650858im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488502), converged = true, ρ = [7.58978454370623e-5 0.001126271272817778 … 0.006697037550003589 0.0011262712728177984; 0.0011262712728177847 0.005274334457306577 … 0.005274334457306614 0.0011262712728177865; … ; 0.006697037550003582 0.005274334457306617 … 0.023244754190917753 0.012258986825135139; 0.0011262712728178068 0.0011262712728177967 … 0.012258986825135144 0.00377000862983923;;; 0.0011262712728177721 0.005274334457306592 … 0.005274334457306628 0.0011262712728177917; 0.005274334457306597 0.014620065304605292 … 0.005274334457306614 0.0025880808748102824; … ; 0.005274334457306621 0.005274334457306615 … 0.018107686646016297 0.008922003044655156; 0.0011262712728178001 0.0025880808748102923 … 0.008922003044655165 0.0025880808748103105;;; 0.0066970375500035395 0.01641210910147818 … 0.00669703755000358 0.003770008629839206; 0.016412109101478185 0.03127783931577131 … 0.008922003044655123 0.008922003044655112; … ; 0.006697037550003575 0.008922003044655126 … 0.016476756359327743 0.008922003044655156; 0.003770008629839214 0.008922003044655121 … 0.008922003044655161 0.003770008629839228;;; … ;;; 0.019853839853269595 0.016412109101478195 … 0.037156673635519194 0.027190800686436957; 0.0164121091014782 0.014620065304605299 … 0.03230127212629383 0.02232210093157708; … ; 0.037156673635519194 0.032301272126293835 … 0.046296980701314064 0.04263658273129362; 0.027190800686436964 0.022322100931577094 … 0.042636582731293636 0.03477222914185011;;; 0.006697037550003547 0.005274334457306596 … 0.02324475419091772 0.012258986825135107; 0.0052743344573065966 0.005274334457306582 … 0.018107686646016245 0.00892200304465512; … ; 0.02324475419091771 0.01810768664601625 … 0.04037111033543274 0.03149160381124454; 0.012258986825135114 0.008922003044655132 … 0.031491603811244544 0.02004716343260886;;; 0.0011262712728177739 0.0011262712728177815 … 0.012258986825135125 0.003770008629839211; 0.0011262712728177856 0.0025880808748102667 … 0.008922003044655126 0.002588080874810285; … ; 0.012258986825135118 0.008922003044655126 … 0.03149160381124455 0.02004716343260887; 0.0037700086298392194 0.002588080874810296 … 0.02004716343260888 0.008952603496674786;;;;], eigenvalues = [[-0.1783683565387998, 0.2624919449923598, 0.26249194499235984, 0.26249194499235995, 0.3546921481682453, 0.3546921481682454, 0.35469214817019323], [-0.12755037617856205, 0.06475320594739699, 0.2254516651749672, 0.22545166517496723, 0.32197764961194913, 0.3892227690852467, 0.38922276908524683], [-0.10818729216444366, 0.07755003473530532, 0.1727832801153112, 0.17278328011531127, 0.28435185361980597, 0.3305476484329166, 0.5267232426401179], [-0.0577732537435514, 0.012724782206306183, 0.09766073750145772, 0.18417825333038046, 0.31522841795988865, 0.4720312185872413, 0.4979135176789969]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930608296, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.7127202491214747 + 0.627481899117716im 3.8450155832277544e-13 + 3.427090949079341e-13im … 8.337704812967963e-12 + 1.732991763832011e-12im -4.833297968436519e-7 - 1.6324677798943088e-7im; -0.006306340660644026 + 0.09915456247551516im -0.03532183056873374 - 0.2756092659547678im … -0.11335859787785733 - 0.07376514550575822im -0.0600416911447497 - 0.07397374547146056im; … ; 0.008825172786085165 - 0.007769719166236081im 0.03415650827484937 - 0.04055690201728997im … -0.012314116173458216 - 0.0028720574530665135im -0.05667026340114669 - 0.0024452063911706463im; -0.006306340660525398 + 0.09915456247551703im -0.005928956312465352 - 0.20592157246100268im … -0.20343847389270214 - 0.01775765476964575im -0.4106970716421523 + 0.2476737494681003im], [0.8705114860782355 - 0.3014769462966132im -0.1570698816889898 - 0.1286490728404328im … 1.178243304243032e-10 + 1.5420823136680776e-10im -7.672655922220924e-11 + 7.438915342430804e-12im; 0.02732046242305977 - 0.05626945938862176im 0.00896509733940515 - 0.00089176903999231im … -1.2847820667784982e-10 - 2.57215172909701e-11im -8.151590904480453e-13 + 1.0228635526707325e-10im; … ; -0.004670135770697051 + 0.0016173689761061947im 0.06540126359966333 + 0.05356731560632775im … 0.006904534680818751 - 0.03895222939462775im 0.059331400156793605 + 0.0776124364600414im; 0.05106383980445082 - 0.10517152365902026im -0.09962838945611707 + 0.009910156003771575im … -0.10020468041879432 - 0.14338199352195002im 0.42818722082987676 + 0.057159973246836845im], [-0.7707604629529481 + 0.512386544629547im -3.82997636512281e-15 - 4.200963835537178e-14im … 5.43198015808687e-12 + 6.722416317357196e-11im -7.204562328306775e-9 + 4.331919401211266e-9im; -0.013528385419795692 + 0.06718521506148295im -0.036193599525506465 - 0.0376099613707709im … 0.009349415010236327 + 0.024218797111992468im 0.002880284573681644 + 0.005038119550983107im; … ; 0.008823144257444071 - 0.005865454464945897im -1.90362113302974e-14 - 4.611702070290616e-14im … -8.585302181130678e-11 + 2.9454131783798504e-10im 0.053470906145784834 - 0.009463127751073004im; -0.03163120766870703 + 0.15708818339597852im 0.2033362462119678 + 0.21129339069782468im … 0.13400476871372388 + 0.3471269870372466im 0.09064371430351068 - 0.12654202397170325im], [-0.7731028435365563 - 0.20305507171729517im -4.728196039776617e-15 - 1.3480599908270726e-15im … -0.07099564018504104 + 0.1671954629436033im -5.364117930423286e-6 + 7.812725743863019e-6im; -0.3383844196673972 + 0.19760663867545283im 0.15554784615226006 - 0.6009676232782254im … -0.0681558019220178 - 0.16875394246882328im -4.1032467181122123e-7 - 5.0006167020165805e-6im; … ; 0.01281646805074352 + 0.0033662388658343063im -0.00021877437141183654 + 0.00012880956924011278im … 0.005099261925062647 - 0.012012216518212191im -0.045532162178977716 + 0.007206180409573779im; -0.057936081753786665 + 0.03383298316347802im -0.0013313682354543408 + 0.005143814099443165im … -0.053704904766742605 - 0.1329648151751591im -0.27703790593232464 + 0.3811759963697472im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.1783683565387998, 0.2624919449923598, 0.26249194499235984, 0.26249194499235995, 0.3546921481682453, 0.3546921481682454, 0.35469214817019323], [-0.12755037617856205, 0.06475320594739699, 0.2254516651749672, 0.22545166517496723, 0.32197764961194913, 0.3892227690852467, 0.38922276908524683], [-0.10818729216444366, 0.07755003473530532, 0.1727832801153112, 0.17278328011531127, 0.28435185361980597, 0.3305476484329166, 0.5267232426401179], [-0.0577732537435514, 0.012724782206306183, 0.09766073750145772, 0.18417825333038046, 0.31522841795988865, 0.4720312185872413, 0.4979135176789969]], X = [[-0.7127202491214747 + 0.627481899117716im 3.8450155832277544e-13 + 3.427090949079341e-13im … 8.337704812967963e-12 + 1.732991763832011e-12im -4.833297968436519e-7 - 1.6324677798943088e-7im; -0.006306340660644026 + 0.09915456247551516im -0.03532183056873374 - 0.2756092659547678im … -0.11335859787785733 - 0.07376514550575822im -0.0600416911447497 - 0.07397374547146056im; … ; 0.008825172786085165 - 0.007769719166236081im 0.03415650827484937 - 0.04055690201728997im … -0.012314116173458216 - 0.0028720574530665135im -0.05667026340114669 - 0.0024452063911706463im; -0.006306340660525398 + 0.09915456247551703im -0.005928956312465352 - 0.20592157246100268im … -0.20343847389270214 - 0.01775765476964575im -0.4106970716421523 + 0.2476737494681003im], [0.8705114860782355 - 0.3014769462966132im -0.1570698816889898 - 0.1286490728404328im … 1.178243304243032e-10 + 1.5420823136680776e-10im -7.672655922220924e-11 + 7.438915342430804e-12im; 0.02732046242305977 - 0.05626945938862176im 0.00896509733940515 - 0.00089176903999231im … -1.2847820667784982e-10 - 2.57215172909701e-11im -8.151590904480453e-13 + 1.0228635526707325e-10im; … ; -0.004670135770697051 + 0.0016173689761061947im 0.06540126359966333 + 0.05356731560632775im … 0.006904534680818751 - 0.03895222939462775im 0.059331400156793605 + 0.0776124364600414im; 0.05106383980445082 - 0.10517152365902026im -0.09962838945611707 + 0.009910156003771575im … -0.10020468041879432 - 0.14338199352195002im 0.42818722082987676 + 0.057159973246836845im], [-0.7707604629529481 + 0.512386544629547im -3.82997636512281e-15 - 4.200963835537178e-14im … 5.43198015808687e-12 + 6.722416317357196e-11im -7.204562328306775e-9 + 4.331919401211266e-9im; -0.013528385419795692 + 0.06718521506148295im -0.036193599525506465 - 0.0376099613707709im … 0.009349415010236327 + 0.024218797111992468im 0.002880284573681644 + 0.005038119550983107im; … ; 0.008823144257444071 - 0.005865454464945897im -1.90362113302974e-14 - 4.611702070290616e-14im … -8.585302181130678e-11 + 2.9454131783798504e-10im 0.053470906145784834 - 0.009463127751073004im; -0.03163120766870703 + 0.15708818339597852im 0.2033362462119678 + 0.21129339069782468im … 0.13400476871372388 + 0.3471269870372466im 0.09064371430351068 - 0.12654202397170325im], [-0.7731028435365563 - 0.20305507171729517im -4.728196039776617e-15 - 1.3480599908270726e-15im … -0.07099564018504104 + 0.1671954629436033im -5.364117930423286e-6 + 7.812725743863019e-6im; -0.3383844196673972 + 0.19760663867545283im 0.15554784615226006 - 0.6009676232782254im … -0.0681558019220178 - 0.16875394246882328im -4.1032467181122123e-7 - 5.0006167020165805e-6im; … ; 0.01281646805074352 + 0.0033662388658343063im -0.00021877437141183654 + 0.00012880956924011278im … 0.005099261925062647 - 0.012012216518212191im -0.045532162178977716 + 0.007206180409573779im; -0.057936081753786665 + 0.03383298316347802im -0.0013313682354543408 + 0.005143814099443165im … -0.053704904766742605 - 0.1329648151751591im -0.27703790593232464 + 0.3811759963697472im]], residual_norms = [[2.4475433549680203e-12, 2.97350084847299e-12, 2.4683449427462197e-12, 1.1244185642477871e-12, 1.4434497126064457e-11, 2.7703697410578332e-11, 1.577579472360201e-6], [1.7227148254104052e-12, 3.1215231898062006e-12, 8.09547033001585e-13, 6.328660489235058e-13, 8.748113853370453e-11, 3.095964417323733e-9, 3.0531470195382747e-9], [1.195479801534098e-12, 2.2205629546516236e-12, 1.2641157338147591e-12, 9.128420811530888e-13, 4.483627771414757e-11, 1.4404596409127612e-9, 8.738797703261235e-7], [6.830722937312823e-13, 6.46920892795353e-13, 2.0233398656685824e-12, 1.8879534240899594e-12, 3.9406489726183555e-10, 2.1517325039452785e-5, 6.981492176947648e-6]], n_iter = [4, 4, 3, 3], converged = 1, n_matvec = 121)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21070603706600155, 0.02761201933599876, 0.0023140849823046644, 0.00025827176945135297, 9.558009299443772e-6, 1.0578963050223736e-6, 4.479466425707078e-8, 3.409174771710735e-9, 1.077286161017091e-10, 6.450314634689292e-12], history_Etot = [-7.905259012439805, -7.910543843544698, -7.910593446776976, -7.910594393252643, -7.910594396440681, -7.910594396488432, -7.910594396488504, -7.910594396488505, -7.910594396488504, -7.910594396488502], occupation_threshold = 1.0e-6, runtime_ns = 0x000000009f53beb7)