Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#916"{DFTK.var"#anderson#915#917"{Int64, Base.Pairs{Symbol, Int64, Nothing, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668720296 -11.100308396743232 … -8.289845772413251 -11.100308396743294; -11.100308396743232 -9.13005782594885 … -9.130057795897557 -11.100308356760255; … ; -8.289845772413251 -9.130057795897557 … -4.14958992164319 -6.28795619819955; -11.100308396743293 -11.100308356760259 … -6.28795619819955 -9.111848223578171;;; -11.100308396743234 -9.130057825948848 … -9.130057795897558 -11.100308356760259; -9.13005782594885 -6.903159481983018 … -9.13005782729853 -10.053883826553143; … ; -9.130057795897557 -9.13005782729853 … -5.2943536692146065 -7.5473992065222975; -11.100308356760257 -10.053883826553143 … -7.547399206522298 -10.053883826553248;;; -8.28984577241355 -6.307621931517423 … -8.289845781012504 -9.111848193526841; -6.307621931517425 -4.516655665816325 … -7.5473992376121295 -7.54739920652253; … ; -8.289845781012502 -7.547399237612129 … -5.768969083581597 -7.5473992376122006; -9.111848193526841 -7.54739920652253 … -7.547399237612201 -9.111848224928078;;; … ;;; -5.301031718250159 -6.307621955789632 … -2.5497035732758975 -3.8495821793878338; -6.307621955789632 -6.903159495209847 … -3.3290606985463 -4.878419358630949; … ; -2.549703573275897 -3.3290606985463005 … -1.256798470902444 -1.8141947460409256; -3.849582179387834 -4.878419358630951 … -1.8141947460409256 -2.7147673353224584;;; -8.289845772413253 -9.130057795897557 … -4.149589921643192 -6.287956198199549; -9.130057795897558 -9.130057827298529 … -5.2943536692146065 -7.547399206522297; … ; -4.149589921643192 -5.2943536692146065 … -1.909449239915106 -2.8946123678520133; -6.2879561981995495 -7.547399206522297 … -2.894612367852013 -4.48554275937188;;; -11.100308396743294 -11.100308356760257 … -6.28795619819955 -9.11184822357817; -11.100308356760255 -10.053883826553143 … -7.547399206522299 -10.053883826553248; … ; -6.287956198199549 -7.547399206522299 … -2.894612367852013 -4.485542759371879; -9.111848223578171 -10.053883826553248 … -4.48554275937188 -6.871104500135428])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668720296 -11.100308396743232 … -8.289845772413251 -11.100308396743294; -11.100308396743232 -9.13005782594885 … -9.130057795897557 -11.100308356760255; … ; -8.289845772413251 -9.130057795897557 … -4.14958992164319 -6.28795619819955; -11.100308396743293 -11.100308356760259 … -6.28795619819955 -9.111848223578171;;; -11.100308396743234 -9.130057825948848 … -9.130057795897558 -11.100308356760259; -9.13005782594885 -6.903159481983018 … -9.13005782729853 -10.053883826553143; … ; -9.130057795897557 -9.13005782729853 … -5.2943536692146065 -7.5473992065222975; -11.100308356760257 -10.053883826553143 … -7.547399206522298 -10.053883826553248;;; -8.28984577241355 -6.307621931517423 … -8.289845781012504 -9.111848193526841; -6.307621931517425 -4.516655665816325 … -7.5473992376121295 -7.54739920652253; … ; -8.289845781012502 -7.547399237612129 … -5.768969083581597 -7.5473992376122006; -9.111848193526841 -7.54739920652253 … -7.547399237612201 -9.111848224928078;;; … ;;; -5.301031718250159 -6.307621955789632 … -2.5497035732758975 -3.8495821793878338; -6.307621955789632 -6.903159495209847 … -3.3290606985463 -4.878419358630949; … ; -2.549703573275897 -3.3290606985463005 … -1.256798470902444 -1.8141947460409256; -3.849582179387834 -4.878419358630951 … -1.8141947460409256 -2.7147673353224584;;; -8.289845772413253 -9.130057795897557 … -4.149589921643192 -6.287956198199549; -9.130057795897558 -9.130057827298529 … -5.2943536692146065 -7.547399206522297; … ; -4.149589921643192 -5.2943536692146065 … -1.909449239915106 -2.8946123678520133; -6.2879561981995495 -7.547399206522297 … -2.894612367852013 -4.48554275937188;;; -11.100308396743294 -11.100308356760257 … -6.28795619819955 -9.11184822357817; -11.100308356760255 -10.053883826553143 … -7.547399206522299 -10.053883826553248; … ; -6.287956198199549 -7.547399206522299 … -2.894612367852013 -4.485542759371879; -9.111848223578171 -10.053883826553248 … -4.48554275937188 -6.871104500135428]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.004510827119888277 - 0.016466840076506985im 0.0021131896399464375 - 0.006950504843670084im … 0.01609622531189415 - 0.00631223761934468im 0.032871922255371396 + 0.008310556902428861im; -0.04222651657220408 + 0.005606033657824609im 0.01918734370370039 + 0.05707560434517565im … 0.04076563526229447 + 0.0006175762629612291im 0.022853264749630446 - 0.030591220619681496im; … ; -0.007323947500435455 - 0.008660504319987668im -0.011546582677835003 - 0.002218300217343348im … 0.025514190385222797 + 0.0019116834829708174im 0.01425261923151375 + 0.004064491087430219im; 0.0008590473750390154 + 0.018518821286615077im 0.011010451043423934 + 0.004995336581093548im … 0.023188579964905323 - 0.030765875275743114im -0.004937815384434146 + 0.0012741682934606612im;;; -0.00692816894355832 + 0.038356372528848624im 0.03581510478080838 + 0.031385175812682756im … 0.038478554818458285 - 0.002231959826732504im 0.031792518091373234 - 0.01885721681396727im; 0.010397143887660533 + 0.06958021471507222im 0.11422637238120956 + 0.019198253348167084im … 0.03774617592191577 - 0.029468016620349834im -0.015428946621201345 - 0.03590492958367054im; … ; -0.060378956748540234 - 0.016473357662036323im -0.08405840521933179 + 0.037431774907316556im … 0.0022358466079578296 + 0.07166338056760693im 0.025737529551522007 + 0.01757479177431396im; -0.03805357140491142 + 0.05390630512424191im 0.005936616044874221 + 0.07034648425290893im … 0.023107123571190824 + 0.012117053570039185im -0.0018892172158159115 + 0.006368795478503636im;;; 0.042176522454526966 + 0.0700723118277082im -0.005146609743739705 - 0.002305425261129622im … -0.05205159017200426 + 0.04539590764586726im -0.01775729664135718 + 0.07898665369833553im; 0.07672838054066963 + 0.02364756844719387im 0.011045651298557974 - 0.024798784241344532im … -0.017241596748889598 + 0.052468876026320464im 0.020370740520180577 + 0.06320770106928329im; … ; -0.13873172064742295 + 0.09193441198447921im -0.03523527249828131 + 0.12270968608597005im … 0.018640346508466826 + 0.03341217184170884im -0.07611452468246133 - 0.011018881840725888im; -0.007230547592076732 + 0.15140894516869585im 0.04179066076886544 + 0.03349745229995382im … -0.044038814188137175 + 0.0003669450054205101im -0.09960275133082183 + 0.08824649830891786im;;; … ;;; -0.06962999500344992 + 0.11383329735798879im -0.052493406583113925 + 0.005582264813382719im … -0.09344623390199838 - 0.006661428882067652im -0.17599367551327763 + 0.08608782438719972im; -0.01613569914798173 + 0.06796266633557566im -0.0717328653581657 + 0.01893795436730368im … -0.10385078847860424 + 0.03797501628439771im -0.07913886089153432 + 0.1301073303444628im; … ; -0.08307758332432992 + 0.0104660357853687im 0.0009544105773190512 - 0.0008777442621439625im … -0.04426297729610203 - 0.08756683581934728im -0.10180937600678831 - 0.06051648478859782im; -0.1125680097361941 + 0.06653316153148339im -0.02400250050357708 - 0.006409713447945074im … -0.07270585056245246 - 0.019603203202187038im -0.1491275917278101 - 0.007881784052001586im;;; -0.05708294644860647 + 0.01206652509063963im -0.13357613766623366 + 0.012183233311898072im … -0.07316877772454508 + 0.017087115955953205im -0.08010943054720289 + 0.06398093271066484im; -0.08265728637980865 + 0.004722858333639928im -0.14470663176634305 + 0.09119226167536562im … -0.06303922406730696 + 0.06534044675294849im -0.02180489180953285 + 0.07315437882894117im; … ; 0.002467021566470204 - 0.02103201839818069im -0.014570084086164233 - 0.07244162059843579im … -0.07195667607366005 - 0.04360139506165022im -0.04008217846852361 + 0.0069361474050229615im; -0.04752205901515009 - 0.01442880510787685im -0.08716307863127111 - 0.04816204414434877im … -0.046433336752194056 - 0.0002891039697690555im -0.08629925016340842 + 0.009851910175514914im;;; -0.055945224673053885 - 0.0051097629581026635im -0.07494997924346232 + 0.03919925797757147im … -0.011844892495950683 + 0.01978892339935639im -0.017371826100254048 + 0.034184505775141004im; -0.07756000605692412 + 0.014705850891767111im -0.060974332745496414 + 0.09469420964585745im … 0.004222657615145505 + 0.04589155720612085im 0.007798287005465908 + 0.008164345587746896im; … ; -0.00047855823776730283 - 0.08606304904028109im -0.04842729693247551 - 0.02945192012218599im … 0.03481546783647917 + 0.025823949955463592im 0.05452938961496996 - 0.03115431860626549im; -0.06848273454979967 - 0.0421024549362313im -0.0702553566621982 + 0.00635392936912349im … 0.035684481269935786 - 0.0168087671352026im -0.012262524825229167 - 0.05740236553193395im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668720296 -11.100308396743232 … -8.289845772413251 -11.100308396743294; -11.100308396743232 -9.13005782594885 … -9.130057795897557 -11.100308356760255; … ; -8.289845772413251 -9.130057795897557 … -4.14958992164319 -6.28795619819955; -11.100308396743293 -11.100308356760259 … -6.28795619819955 -9.111848223578171;;; -11.100308396743234 -9.130057825948848 … -9.130057795897558 -11.100308356760259; -9.13005782594885 -6.903159481983018 … -9.13005782729853 -10.053883826553143; … ; -9.130057795897557 -9.13005782729853 … -5.2943536692146065 -7.5473992065222975; -11.100308356760257 -10.053883826553143 … -7.547399206522298 -10.053883826553248;;; -8.28984577241355 -6.307621931517423 … -8.289845781012504 -9.111848193526841; -6.307621931517425 -4.516655665816325 … -7.5473992376121295 -7.54739920652253; … ; -8.289845781012502 -7.547399237612129 … -5.768969083581597 -7.5473992376122006; -9.111848193526841 -7.54739920652253 … -7.547399237612201 -9.111848224928078;;; … ;;; -5.301031718250159 -6.307621955789632 … -2.5497035732758975 -3.8495821793878338; -6.307621955789632 -6.903159495209847 … -3.3290606985463 -4.878419358630949; … ; -2.549703573275897 -3.3290606985463005 … -1.256798470902444 -1.8141947460409256; -3.849582179387834 -4.878419358630951 … -1.8141947460409256 -2.7147673353224584;;; -8.289845772413253 -9.130057795897557 … -4.149589921643192 -6.287956198199549; -9.130057795897558 -9.130057827298529 … -5.2943536692146065 -7.547399206522297; … ; -4.149589921643192 -5.2943536692146065 … -1.909449239915106 -2.8946123678520133; -6.2879561981995495 -7.547399206522297 … -2.894612367852013 -4.48554275937188;;; -11.100308396743294 -11.100308356760257 … -6.28795619819955 -9.11184822357817; -11.100308356760255 -10.053883826553143 … -7.547399206522299 -10.053883826553248; … ; -6.287956198199549 -7.547399206522299 … -2.894612367852013 -4.485542759371879; -9.111848223578171 -10.053883826553248 … -4.48554275937188 -6.871104500135428])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668720296 -11.100308396743232 … -8.289845772413251 -11.100308396743294; -11.100308396743232 -9.13005782594885 … -9.130057795897557 -11.100308356760255; … ; -8.289845772413251 -9.130057795897557 … -4.14958992164319 -6.28795619819955; -11.100308396743293 -11.100308356760259 … -6.28795619819955 -9.111848223578171;;; -11.100308396743234 -9.130057825948848 … -9.130057795897558 -11.100308356760259; -9.13005782594885 -6.903159481983018 … -9.13005782729853 -10.053883826553143; … ; -9.130057795897557 -9.13005782729853 … -5.2943536692146065 -7.5473992065222975; -11.100308356760257 -10.053883826553143 … -7.547399206522298 -10.053883826553248;;; -8.28984577241355 -6.307621931517423 … -8.289845781012504 -9.111848193526841; -6.307621931517425 -4.516655665816325 … -7.5473992376121295 -7.54739920652253; … ; -8.289845781012502 -7.547399237612129 … -5.768969083581597 -7.5473992376122006; -9.111848193526841 -7.54739920652253 … -7.547399237612201 -9.111848224928078;;; … ;;; -5.301031718250159 -6.307621955789632 … -2.5497035732758975 -3.8495821793878338; -6.307621955789632 -6.903159495209847 … -3.3290606985463 -4.878419358630949; … ; -2.549703573275897 -3.3290606985463005 … -1.256798470902444 -1.8141947460409256; -3.849582179387834 -4.878419358630951 … -1.8141947460409256 -2.7147673353224584;;; -8.289845772413253 -9.130057795897557 … -4.149589921643192 -6.287956198199549; -9.130057795897558 -9.130057827298529 … -5.2943536692146065 -7.547399206522297; … ; -4.149589921643192 -5.2943536692146065 … -1.909449239915106 -2.8946123678520133; -6.2879561981995495 -7.547399206522297 … -2.894612367852013 -4.48554275937188;;; -11.100308396743294 -11.100308356760257 … -6.28795619819955 -9.11184822357817; -11.100308356760255 -10.053883826553143 … -7.547399206522299 -10.053883826553248; … ; -6.287956198199549 -7.547399206522299 … -2.894612367852013 -4.485542759371879; -9.111848223578171 -10.053883826553248 … -4.48554275937188 -6.871104500135428]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.004510827119888277 - 0.016466840076506985im 0.0021131896399464375 - 0.006950504843670084im … 0.01609622531189415 - 0.00631223761934468im 0.032871922255371396 + 0.008310556902428861im; -0.04222651657220408 + 0.005606033657824609im 0.01918734370370039 + 0.05707560434517565im … 0.04076563526229447 + 0.0006175762629612291im 0.022853264749630446 - 0.030591220619681496im; … ; -0.007323947500435455 - 0.008660504319987668im -0.011546582677835003 - 0.002218300217343348im … 0.025514190385222797 + 0.0019116834829708174im 0.01425261923151375 + 0.004064491087430219im; 0.0008590473750390154 + 0.018518821286615077im 0.011010451043423934 + 0.004995336581093548im … 0.023188579964905323 - 0.030765875275743114im -0.004937815384434146 + 0.0012741682934606612im;;; -0.00692816894355832 + 0.038356372528848624im 0.03581510478080838 + 0.031385175812682756im … 0.038478554818458285 - 0.002231959826732504im 0.031792518091373234 - 0.01885721681396727im; 0.010397143887660533 + 0.06958021471507222im 0.11422637238120956 + 0.019198253348167084im … 0.03774617592191577 - 0.029468016620349834im -0.015428946621201345 - 0.03590492958367054im; … ; -0.060378956748540234 - 0.016473357662036323im -0.08405840521933179 + 0.037431774907316556im … 0.0022358466079578296 + 0.07166338056760693im 0.025737529551522007 + 0.01757479177431396im; -0.03805357140491142 + 0.05390630512424191im 0.005936616044874221 + 0.07034648425290893im … 0.023107123571190824 + 0.012117053570039185im -0.0018892172158159115 + 0.006368795478503636im;;; 0.042176522454526966 + 0.0700723118277082im -0.005146609743739705 - 0.002305425261129622im … -0.05205159017200426 + 0.04539590764586726im -0.01775729664135718 + 0.07898665369833553im; 0.07672838054066963 + 0.02364756844719387im 0.011045651298557974 - 0.024798784241344532im … -0.017241596748889598 + 0.052468876026320464im 0.020370740520180577 + 0.06320770106928329im; … ; -0.13873172064742295 + 0.09193441198447921im -0.03523527249828131 + 0.12270968608597005im … 0.018640346508466826 + 0.03341217184170884im -0.07611452468246133 - 0.011018881840725888im; -0.007230547592076732 + 0.15140894516869585im 0.04179066076886544 + 0.03349745229995382im … -0.044038814188137175 + 0.0003669450054205101im -0.09960275133082183 + 0.08824649830891786im;;; … ;;; -0.06962999500344992 + 0.11383329735798879im -0.052493406583113925 + 0.005582264813382719im … -0.09344623390199838 - 0.006661428882067652im -0.17599367551327763 + 0.08608782438719972im; -0.01613569914798173 + 0.06796266633557566im -0.0717328653581657 + 0.01893795436730368im … -0.10385078847860424 + 0.03797501628439771im -0.07913886089153432 + 0.1301073303444628im; … ; -0.08307758332432992 + 0.0104660357853687im 0.0009544105773190512 - 0.0008777442621439625im … -0.04426297729610203 - 0.08756683581934728im -0.10180937600678831 - 0.06051648478859782im; -0.1125680097361941 + 0.06653316153148339im -0.02400250050357708 - 0.006409713447945074im … -0.07270585056245246 - 0.019603203202187038im -0.1491275917278101 - 0.007881784052001586im;;; -0.05708294644860647 + 0.01206652509063963im -0.13357613766623366 + 0.012183233311898072im … -0.07316877772454508 + 0.017087115955953205im -0.08010943054720289 + 0.06398093271066484im; -0.08265728637980865 + 0.004722858333639928im -0.14470663176634305 + 0.09119226167536562im … -0.06303922406730696 + 0.06534044675294849im -0.02180489180953285 + 0.07315437882894117im; … ; 0.002467021566470204 - 0.02103201839818069im -0.014570084086164233 - 0.07244162059843579im … -0.07195667607366005 - 0.04360139506165022im -0.04008217846852361 + 0.0069361474050229615im; -0.04752205901515009 - 0.01442880510787685im -0.08716307863127111 - 0.04816204414434877im … -0.046433336752194056 - 0.0002891039697690555im -0.08629925016340842 + 0.009851910175514914im;;; -0.055945224673053885 - 0.0051097629581026635im -0.07494997924346232 + 0.03919925797757147im … -0.011844892495950683 + 0.01978892339935639im -0.017371826100254048 + 0.034184505775141004im; -0.07756000605692412 + 0.014705850891767111im -0.060974332745496414 + 0.09469420964585745im … 0.004222657615145505 + 0.04589155720612085im 0.007798287005465908 + 0.008164345587746896im; … ; -0.00047855823776730283 - 0.08606304904028109im -0.04842729693247551 - 0.02945192012218599im … 0.03481546783647917 + 0.025823949955463592im 0.05452938961496996 - 0.03115431860626549im; -0.06848273454979967 - 0.0421024549362313im -0.0702553566621982 + 0.00635392936912349im … 0.035684481269935786 - 0.0168087671352026im -0.012262524825229167 - 0.05740236553193395im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668720296 -11.100308396743232 … -8.289845772413251 -11.100308396743294; -11.100308396743232 -9.13005782594885 … -9.130057795897557 -11.100308356760255; … ; -8.289845772413251 -9.130057795897557 … -4.14958992164319 -6.28795619819955; -11.100308396743293 -11.100308356760259 … -6.28795619819955 -9.111848223578171;;; -11.100308396743234 -9.130057825948848 … -9.130057795897558 -11.100308356760259; -9.13005782594885 -6.903159481983018 … -9.13005782729853 -10.053883826553143; … ; -9.130057795897557 -9.13005782729853 … -5.2943536692146065 -7.5473992065222975; -11.100308356760257 -10.053883826553143 … -7.547399206522298 -10.053883826553248;;; -8.28984577241355 -6.307621931517423 … -8.289845781012504 -9.111848193526841; -6.307621931517425 -4.516655665816325 … -7.5473992376121295 -7.54739920652253; … ; -8.289845781012502 -7.547399237612129 … -5.768969083581597 -7.5473992376122006; -9.111848193526841 -7.54739920652253 … -7.547399237612201 -9.111848224928078;;; … ;;; -5.301031718250159 -6.307621955789632 … -2.5497035732758975 -3.8495821793878338; -6.307621955789632 -6.903159495209847 … -3.3290606985463 -4.878419358630949; … ; -2.549703573275897 -3.3290606985463005 … -1.256798470902444 -1.8141947460409256; -3.849582179387834 -4.878419358630951 … -1.8141947460409256 -2.7147673353224584;;; -8.289845772413253 -9.130057795897557 … -4.149589921643192 -6.287956198199549; -9.130057795897558 -9.130057827298529 … -5.2943536692146065 -7.547399206522297; … ; -4.149589921643192 -5.2943536692146065 … -1.909449239915106 -2.8946123678520133; -6.2879561981995495 -7.547399206522297 … -2.894612367852013 -4.48554275937188;;; -11.100308396743294 -11.100308356760257 … -6.28795619819955 -9.11184822357817; -11.100308356760255 -10.053883826553143 … -7.547399206522299 -10.053883826553248; … ; -6.287956198199549 -7.547399206522299 … -2.894612367852013 -4.485542759371879; -9.111848223578171 -10.053883826553248 … -4.48554275937188 -6.871104500135428])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668720296 -11.100308396743232 … -8.289845772413251 -11.100308396743294; -11.100308396743232 -9.13005782594885 … -9.130057795897557 -11.100308356760255; … ; -8.289845772413251 -9.130057795897557 … -4.14958992164319 -6.28795619819955; -11.100308396743293 -11.100308356760259 … -6.28795619819955 -9.111848223578171;;; -11.100308396743234 -9.130057825948848 … -9.130057795897558 -11.100308356760259; -9.13005782594885 -6.903159481983018 … -9.13005782729853 -10.053883826553143; … ; -9.130057795897557 -9.13005782729853 … -5.2943536692146065 -7.5473992065222975; -11.100308356760257 -10.053883826553143 … -7.547399206522298 -10.053883826553248;;; -8.28984577241355 -6.307621931517423 … -8.289845781012504 -9.111848193526841; -6.307621931517425 -4.516655665816325 … -7.5473992376121295 -7.54739920652253; … ; -8.289845781012502 -7.547399237612129 … -5.768969083581597 -7.5473992376122006; -9.111848193526841 -7.54739920652253 … -7.547399237612201 -9.111848224928078;;; … ;;; -5.301031718250159 -6.307621955789632 … -2.5497035732758975 -3.8495821793878338; -6.307621955789632 -6.903159495209847 … -3.3290606985463 -4.878419358630949; … ; -2.549703573275897 -3.3290606985463005 … -1.256798470902444 -1.8141947460409256; -3.849582179387834 -4.878419358630951 … -1.8141947460409256 -2.7147673353224584;;; -8.289845772413253 -9.130057795897557 … -4.149589921643192 -6.287956198199549; -9.130057795897558 -9.130057827298529 … -5.2943536692146065 -7.547399206522297; … ; -4.149589921643192 -5.2943536692146065 … -1.909449239915106 -2.8946123678520133; -6.2879561981995495 -7.547399206522297 … -2.894612367852013 -4.48554275937188;;; -11.100308396743294 -11.100308356760257 … -6.28795619819955 -9.11184822357817; -11.100308356760255 -10.053883826553143 … -7.547399206522299 -10.053883826553248; … ; -6.287956198199549 -7.547399206522299 … -2.894612367852013 -4.485542759371879; -9.111848223578171 -10.053883826553248 … -4.48554275937188 -6.871104500135428]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.004510827119888277 - 0.016466840076506985im 0.0021131896399464375 - 0.006950504843670084im … 0.01609622531189415 - 0.00631223761934468im 0.032871922255371396 + 0.008310556902428861im; -0.04222651657220408 + 0.005606033657824609im 0.01918734370370039 + 0.05707560434517565im … 0.04076563526229447 + 0.0006175762629612291im 0.022853264749630446 - 0.030591220619681496im; … ; -0.007323947500435455 - 0.008660504319987668im -0.011546582677835003 - 0.002218300217343348im … 0.025514190385222797 + 0.0019116834829708174im 0.01425261923151375 + 0.004064491087430219im; 0.0008590473750390154 + 0.018518821286615077im 0.011010451043423934 + 0.004995336581093548im … 0.023188579964905323 - 0.030765875275743114im -0.004937815384434146 + 0.0012741682934606612im;;; -0.00692816894355832 + 0.038356372528848624im 0.03581510478080838 + 0.031385175812682756im … 0.038478554818458285 - 0.002231959826732504im 0.031792518091373234 - 0.01885721681396727im; 0.010397143887660533 + 0.06958021471507222im 0.11422637238120956 + 0.019198253348167084im … 0.03774617592191577 - 0.029468016620349834im -0.015428946621201345 - 0.03590492958367054im; … ; -0.060378956748540234 - 0.016473357662036323im -0.08405840521933179 + 0.037431774907316556im … 0.0022358466079578296 + 0.07166338056760693im 0.025737529551522007 + 0.01757479177431396im; -0.03805357140491142 + 0.05390630512424191im 0.005936616044874221 + 0.07034648425290893im … 0.023107123571190824 + 0.012117053570039185im -0.0018892172158159115 + 0.006368795478503636im;;; 0.042176522454526966 + 0.0700723118277082im -0.005146609743739705 - 0.002305425261129622im … -0.05205159017200426 + 0.04539590764586726im -0.01775729664135718 + 0.07898665369833553im; 0.07672838054066963 + 0.02364756844719387im 0.011045651298557974 - 0.024798784241344532im … -0.017241596748889598 + 0.052468876026320464im 0.020370740520180577 + 0.06320770106928329im; … ; -0.13873172064742295 + 0.09193441198447921im -0.03523527249828131 + 0.12270968608597005im … 0.018640346508466826 + 0.03341217184170884im -0.07611452468246133 - 0.011018881840725888im; -0.007230547592076732 + 0.15140894516869585im 0.04179066076886544 + 0.03349745229995382im … -0.044038814188137175 + 0.0003669450054205101im -0.09960275133082183 + 0.08824649830891786im;;; … ;;; -0.06962999500344992 + 0.11383329735798879im -0.052493406583113925 + 0.005582264813382719im … -0.09344623390199838 - 0.006661428882067652im -0.17599367551327763 + 0.08608782438719972im; -0.01613569914798173 + 0.06796266633557566im -0.0717328653581657 + 0.01893795436730368im … -0.10385078847860424 + 0.03797501628439771im -0.07913886089153432 + 0.1301073303444628im; … ; -0.08307758332432992 + 0.0104660357853687im 0.0009544105773190512 - 0.0008777442621439625im … -0.04426297729610203 - 0.08756683581934728im -0.10180937600678831 - 0.06051648478859782im; -0.1125680097361941 + 0.06653316153148339im -0.02400250050357708 - 0.006409713447945074im … -0.07270585056245246 - 0.019603203202187038im -0.1491275917278101 - 0.007881784052001586im;;; -0.05708294644860647 + 0.01206652509063963im -0.13357613766623366 + 0.012183233311898072im … -0.07316877772454508 + 0.017087115955953205im -0.08010943054720289 + 0.06398093271066484im; -0.08265728637980865 + 0.004722858333639928im -0.14470663176634305 + 0.09119226167536562im … -0.06303922406730696 + 0.06534044675294849im -0.02180489180953285 + 0.07315437882894117im; … ; 0.002467021566470204 - 0.02103201839818069im -0.014570084086164233 - 0.07244162059843579im … -0.07195667607366005 - 0.04360139506165022im -0.04008217846852361 + 0.0069361474050229615im; -0.04752205901515009 - 0.01442880510787685im -0.08716307863127111 - 0.04816204414434877im … -0.046433336752194056 - 0.0002891039697690555im -0.08629925016340842 + 0.009851910175514914im;;; -0.055945224673053885 - 0.0051097629581026635im -0.07494997924346232 + 0.03919925797757147im … -0.011844892495950683 + 0.01978892339935639im -0.017371826100254048 + 0.034184505775141004im; -0.07756000605692412 + 0.014705850891767111im -0.060974332745496414 + 0.09469420964585745im … 0.004222657615145505 + 0.04589155720612085im 0.007798287005465908 + 0.008164345587746896im; … ; -0.00047855823776730283 - 0.08606304904028109im -0.04842729693247551 - 0.02945192012218599im … 0.03481546783647917 + 0.025823949955463592im 0.05452938961496996 - 0.03115431860626549im; -0.06848273454979967 - 0.0421024549362313im -0.0702553566621982 + 0.00635392936912349im … 0.035684481269935786 - 0.0168087671352026im -0.012262524825229167 - 0.05740236553193395im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668720296 -11.100308396743232 … -8.289845772413251 -11.100308396743294; -11.100308396743232 -9.13005782594885 … -9.130057795897557 -11.100308356760255; … ; -8.289845772413251 -9.130057795897557 … -4.14958992164319 -6.28795619819955; -11.100308396743293 -11.100308356760259 … -6.28795619819955 -9.111848223578171;;; -11.100308396743234 -9.130057825948848 … -9.130057795897558 -11.100308356760259; -9.13005782594885 -6.903159481983018 … -9.13005782729853 -10.053883826553143; … ; -9.130057795897557 -9.13005782729853 … -5.2943536692146065 -7.5473992065222975; -11.100308356760257 -10.053883826553143 … -7.547399206522298 -10.053883826553248;;; -8.28984577241355 -6.307621931517423 … -8.289845781012504 -9.111848193526841; -6.307621931517425 -4.516655665816325 … -7.5473992376121295 -7.54739920652253; … ; -8.289845781012502 -7.547399237612129 … -5.768969083581597 -7.5473992376122006; -9.111848193526841 -7.54739920652253 … -7.547399237612201 -9.111848224928078;;; … ;;; -5.301031718250159 -6.307621955789632 … -2.5497035732758975 -3.8495821793878338; -6.307621955789632 -6.903159495209847 … -3.3290606985463 -4.878419358630949; … ; -2.549703573275897 -3.3290606985463005 … -1.256798470902444 -1.8141947460409256; -3.849582179387834 -4.878419358630951 … -1.8141947460409256 -2.7147673353224584;;; -8.289845772413253 -9.130057795897557 … -4.149589921643192 -6.287956198199549; -9.130057795897558 -9.130057827298529 … -5.2943536692146065 -7.547399206522297; … ; -4.149589921643192 -5.2943536692146065 … -1.909449239915106 -2.8946123678520133; -6.2879561981995495 -7.547399206522297 … -2.894612367852013 -4.48554275937188;;; -11.100308396743294 -11.100308356760257 … -6.28795619819955 -9.11184822357817; -11.100308356760255 -10.053883826553143 … -7.547399206522299 -10.053883826553248; … ; -6.287956198199549 -7.547399206522299 … -2.894612367852013 -4.485542759371879; -9.111848223578171 -10.053883826553248 … -4.48554275937188 -6.871104500135428])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668720296 -11.100308396743232 … -8.289845772413251 -11.100308396743294; -11.100308396743232 -9.13005782594885 … -9.130057795897557 -11.100308356760255; … ; -8.289845772413251 -9.130057795897557 … -4.14958992164319 -6.28795619819955; -11.100308396743293 -11.100308356760259 … -6.28795619819955 -9.111848223578171;;; -11.100308396743234 -9.130057825948848 … -9.130057795897558 -11.100308356760259; -9.13005782594885 -6.903159481983018 … -9.13005782729853 -10.053883826553143; … ; -9.130057795897557 -9.13005782729853 … -5.2943536692146065 -7.5473992065222975; -11.100308356760257 -10.053883826553143 … -7.547399206522298 -10.053883826553248;;; -8.28984577241355 -6.307621931517423 … -8.289845781012504 -9.111848193526841; -6.307621931517425 -4.516655665816325 … -7.5473992376121295 -7.54739920652253; … ; -8.289845781012502 -7.547399237612129 … -5.768969083581597 -7.5473992376122006; -9.111848193526841 -7.54739920652253 … -7.547399237612201 -9.111848224928078;;; … ;;; -5.301031718250159 -6.307621955789632 … -2.5497035732758975 -3.8495821793878338; -6.307621955789632 -6.903159495209847 … -3.3290606985463 -4.878419358630949; … ; -2.549703573275897 -3.3290606985463005 … -1.256798470902444 -1.8141947460409256; -3.849582179387834 -4.878419358630951 … -1.8141947460409256 -2.7147673353224584;;; -8.289845772413253 -9.130057795897557 … -4.149589921643192 -6.287956198199549; -9.130057795897558 -9.130057827298529 … -5.2943536692146065 -7.547399206522297; … ; -4.149589921643192 -5.2943536692146065 … -1.909449239915106 -2.8946123678520133; -6.2879561981995495 -7.547399206522297 … -2.894612367852013 -4.48554275937188;;; -11.100308396743294 -11.100308356760257 … -6.28795619819955 -9.11184822357817; -11.100308356760255 -10.053883826553143 … -7.547399206522299 -10.053883826553248; … ; -6.287956198199549 -7.547399206522299 … -2.894612367852013 -4.485542759371879; -9.111848223578171 -10.053883826553248 … -4.48554275937188 -6.871104500135428]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [0.004510827119888277 - 0.016466840076506985im 0.0021131896399464375 - 0.006950504843670084im … 0.01609622531189415 - 0.00631223761934468im 0.032871922255371396 + 0.008310556902428861im; -0.04222651657220408 + 0.005606033657824609im 0.01918734370370039 + 0.05707560434517565im … 0.04076563526229447 + 0.0006175762629612291im 0.022853264749630446 - 0.030591220619681496im; … ; -0.007323947500435455 - 0.008660504319987668im -0.011546582677835003 - 0.002218300217343348im … 0.025514190385222797 + 0.0019116834829708174im 0.01425261923151375 + 0.004064491087430219im; 0.0008590473750390154 + 0.018518821286615077im 0.011010451043423934 + 0.004995336581093548im … 0.023188579964905323 - 0.030765875275743114im -0.004937815384434146 + 0.0012741682934606612im;;; -0.00692816894355832 + 0.038356372528848624im 0.03581510478080838 + 0.031385175812682756im … 0.038478554818458285 - 0.002231959826732504im 0.031792518091373234 - 0.01885721681396727im; 0.010397143887660533 + 0.06958021471507222im 0.11422637238120956 + 0.019198253348167084im … 0.03774617592191577 - 0.029468016620349834im -0.015428946621201345 - 0.03590492958367054im; … ; -0.060378956748540234 - 0.016473357662036323im -0.08405840521933179 + 0.037431774907316556im … 0.0022358466079578296 + 0.07166338056760693im 0.025737529551522007 + 0.01757479177431396im; -0.03805357140491142 + 0.05390630512424191im 0.005936616044874221 + 0.07034648425290893im … 0.023107123571190824 + 0.012117053570039185im -0.0018892172158159115 + 0.006368795478503636im;;; 0.042176522454526966 + 0.0700723118277082im -0.005146609743739705 - 0.002305425261129622im … -0.05205159017200426 + 0.04539590764586726im -0.01775729664135718 + 0.07898665369833553im; 0.07672838054066963 + 0.02364756844719387im 0.011045651298557974 - 0.024798784241344532im … -0.017241596748889598 + 0.052468876026320464im 0.020370740520180577 + 0.06320770106928329im; … ; -0.13873172064742295 + 0.09193441198447921im -0.03523527249828131 + 0.12270968608597005im … 0.018640346508466826 + 0.03341217184170884im -0.07611452468246133 - 0.011018881840725888im; -0.007230547592076732 + 0.15140894516869585im 0.04179066076886544 + 0.03349745229995382im … -0.044038814188137175 + 0.0003669450054205101im -0.09960275133082183 + 0.08824649830891786im;;; … ;;; -0.06962999500344992 + 0.11383329735798879im -0.052493406583113925 + 0.005582264813382719im … -0.09344623390199838 - 0.006661428882067652im -0.17599367551327763 + 0.08608782438719972im; -0.01613569914798173 + 0.06796266633557566im -0.0717328653581657 + 0.01893795436730368im … -0.10385078847860424 + 0.03797501628439771im -0.07913886089153432 + 0.1301073303444628im; … ; -0.08307758332432992 + 0.0104660357853687im 0.0009544105773190512 - 0.0008777442621439625im … -0.04426297729610203 - 0.08756683581934728im -0.10180937600678831 - 0.06051648478859782im; -0.1125680097361941 + 0.06653316153148339im -0.02400250050357708 - 0.006409713447945074im … -0.07270585056245246 - 0.019603203202187038im -0.1491275917278101 - 0.007881784052001586im;;; -0.05708294644860647 + 0.01206652509063963im -0.13357613766623366 + 0.012183233311898072im … -0.07316877772454508 + 0.017087115955953205im -0.08010943054720289 + 0.06398093271066484im; -0.08265728637980865 + 0.004722858333639928im -0.14470663176634305 + 0.09119226167536562im … -0.06303922406730696 + 0.06534044675294849im -0.02180489180953285 + 0.07315437882894117im; … ; 0.002467021566470204 - 0.02103201839818069im -0.014570084086164233 - 0.07244162059843579im … -0.07195667607366005 - 0.04360139506165022im -0.04008217846852361 + 0.0069361474050229615im; -0.04752205901515009 - 0.01442880510787685im -0.08716307863127111 - 0.04816204414434877im … -0.046433336752194056 - 0.0002891039697690555im -0.08629925016340842 + 0.009851910175514914im;;; -0.055945224673053885 - 0.0051097629581026635im -0.07494997924346232 + 0.03919925797757147im … -0.011844892495950683 + 0.01978892339935639im -0.017371826100254048 + 0.034184505775141004im; -0.07756000605692412 + 0.014705850891767111im -0.060974332745496414 + 0.09469420964585745im … 0.004222657615145505 + 0.04589155720612085im 0.007798287005465908 + 0.008164345587746896im; … ; -0.00047855823776730283 - 0.08606304904028109im -0.04842729693247551 - 0.02945192012218599im … 0.03481546783647917 + 0.025823949955463592im 0.05452938961496996 - 0.03115431860626549im; -0.06848273454979967 - 0.0421024549362313im -0.0702553566621982 + 0.00635392936912349im … 0.035684481269935786 - 0.0168087671352026im -0.012262524825229167 - 0.05740236553193395im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488504), converged = true, ρ = [7.589784541116937e-5 0.0011262712728560195 … 0.006697037550140327 0.0011262712728560297; 0.0011262712728560146 0.005274334457443638 … 0.005274334457443667 0.0011262712728560195; … ; 0.006697037550140329 0.005274334457443681 … 0.02324475419094035 0.01225898682523931; 0.0011262712728560248 0.0011262712728560297 … 0.012258986825239302 0.0037700086299346037;;; 0.0011262712728560226 0.00527433445744365 … 0.005274334457443686 0.0011262712728560358; 0.005274334457443642 0.014620065304831257 … 0.005274334457443656 0.0025880808748933387; … ; 0.005274334457443692 0.005274334457443671 … 0.01810768664612448 0.0089220030447999; 0.0011262712728560295 0.0025880808748933552 … 0.008922003044799894 0.002588080874893366;;; 0.00669703755014029 0.016412109101681283 … 0.006697037550140321 0.003770008629934592; 0.01641210910168127 0.03127783931602064 … 0.008922003044799854 0.008922003044799842; … ; 0.0066970375501403225 0.008922003044799872 … 0.01647675635946753 0.008922003044799898; 0.0037700086299345876 0.008922003044799853 … 0.008922003044799886 0.003770008629934597;;; … ;;; 0.019853839853414008 0.016412109101681296 … 0.037156673635477706 0.027190800686480273; 0.01641210910168129 0.014620065304831276 … 0.03230127212633422 0.022322100931709558; … ; 0.037156673635477706 0.032301272126334234 … 0.04629698070122998 0.04263658273120253; 0.02719080068648027 0.022322100931709568 … 0.04263658273120252 0.034772229141798346;;; 0.006697037550140297 0.005274334457443651 … 0.02324475419094033 0.012258986825239283; 0.005274334457443642 0.005274334457443641 … 0.018107686646124426 0.008922003044799853; … ; 0.02324475419094033 0.01810768664612444 … 0.04037111033531885 0.03149160381117149; 0.012258986825239277 0.008922003044799856 … 0.031491603811171484 0.020047163432624266;;; 0.0011262712728560235 0.0011262712728560187 … 0.012258986825239297 0.003770008629934603; 0.0011262712728560128 0.002588080874893335 … 0.00892200304479986 0.0025880808748933405; … ; 0.0122589868252393 0.008922003044799875 … 0.031491603811171505 0.02004716343262429; 0.0037700086299345954 0.0025880808748933544 … 0.020047163432624283 0.008952603496760792;;;;], eigenvalues = [[-0.17836835653905533, 0.26249194499182177, 0.2624919449918221, 0.2624919449918225, 0.3546921481679769, 0.35469214816797723, 0.35469214820358996], [-0.1275503761788873, 0.06475320594711369, 0.22545166517448417, 0.2254516651744842, 0.32197764961173847, 0.38922276908505715, 0.3892227690850577], [-0.10818729216477652, 0.07755003473476484, 0.17278328011495486, 0.17278328011495506, 0.28435185362006254, 0.33054764843326023, 0.5267232426392774], [-0.0577732537440052, 0.012724782205864807, 0.09766073750145857, 0.1841782533299909, 0.3152284179601175, 0.47203121863764363, 0.49791351763438746]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993059425, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.6452959767770758 + 0.6966324637732738im -5.5802569455239225e-14 + 3.19206004245041e-14im … 4.330519718502752e-14 + 3.2965992970967065e-14im 2.1697869972731307e-7 + 2.0657437185592672e-9im; 0.0037981187494740233 + 0.09928228183482676im -0.12955585313314483 + 0.10605932166370569im … 0.1741766142539025 - 0.11391991838669946im 0.19714306101419668 - 0.10089139940139415im; … ; 0.00799029984072417 - 0.008625967718447253im -0.033756254046516526 + 0.018485366093052437im … -0.010735386677841846 - 0.005237792911870193im -0.013715264392466193 + 0.04083431153173488im; 0.003798118749461587 + 0.0992822818347775im 0.03113438568001296 + 0.23063995424235237im … 0.0794284523902126 - 0.08130982337836722im 0.35800262344307215 + 0.2226812890367681im], [-0.2770492234876919 + 0.8785911018822414im -0.05608139419578369 + 0.1951317731732004im … -3.284087845128568e-11 - 3.176391194354056e-11im -4.949485032531385e-12 - 3.60789174938645e-11im; 0.02888120339906978 + 0.0554845547615453im -0.004363029343537957 - 0.007882397939308054im … 1.1592475088554515e-10 - 1.0405132558240722e-10im 2.2672253606166108e-11 + 2.6838298392557367e-10im; … ; 0.0014863186867258749 - 0.0047134814394474926im 0.023351351674633897 - 0.08124959665516505im … 0.05506822427560632 - 0.06532339924818537im -0.0028701851399664125 + 0.06165192905753592im; 0.053980972975454525 + 0.10370448245369841im 0.0484859862855471 + 0.08759644006280527im … -0.03206522558916187 - 0.3764328201799939im 0.18379499311387426 + 0.20174361554293707im], [0.0459625983358509 - 0.9243912061037762im 2.8936505731567136e-15 + 1.4283296406348907e-14im … -2.195750639518299e-12 + 1.0213924621737134e-12im 2.8738841304915264e-9 - 2.8055592627000437e-9im; -0.04599427390660426 - 0.05080745125222501im -0.039887536997110784 - 0.03366704966524961im … 0.012026557132292918 - 0.023007034367002563im -0.006601591532954891 - 0.0011798784663067522im; … ; -0.0005261487259415357 + 0.010581805053720182im 1.0902167984372474e-14 + 1.298970007176712e-13im … 3.35646355332743e-11 + 2.0357903008894356e-12im 0.03768774078004242 + 0.03976801946499178im; -0.10754087678381434 - 0.11879474096946387im 0.22408884858338854 + 0.18914204693020006im … 0.17237612952053152 - 0.32975884088524704im 0.15560562182577073 + 0.0038414556180324734im], [0.7534312615178704 - 0.2669470041058468im 1.6077026953413338e-14 - 2.848487698431566e-14im … 0.15568907645730465 - 0.09357351139657956im -3.8536816533636485e-6 + 6.040834051133071e-6im; 0.16863940818342038 - 0.3537133714323561im 0.5880298296122284 - 0.19894254486385735im … -0.04400720095713915 + 0.17659940608070557im -1.2383290207104295e-6 - 3.1853724015034105e-6im; … ; -0.01249035334978131 + 0.004425436768124809im -0.00022758210979518525 - 0.00011251895002275534im … -0.011186495209175445 + 0.00672384212349802im -0.009340907862852866 + 0.045142830496311855im; 0.028873393606826423 - 0.06056060980834482im -0.005033076677294662 + 0.0017027930083709742im … -0.03467958587830836 + 0.13916272359852697im 0.2587804362259357 + 0.39380027348297486im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653905533, 0.26249194499182177, 0.2624919449918221, 0.2624919449918225, 0.3546921481679769, 0.35469214816797723, 0.35469214820358996], [-0.1275503761788873, 0.06475320594711369, 0.22545166517448417, 0.2254516651744842, 0.32197764961173847, 0.38922276908505715, 0.3892227690850577], [-0.10818729216477652, 0.07755003473476484, 0.17278328011495486, 0.17278328011495506, 0.28435185362006254, 0.33054764843326023, 0.5267232426392774], [-0.0577732537440052, 0.012724782205864807, 0.09766073750145857, 0.1841782533299909, 0.3152284179601175, 0.47203121863764363, 0.49791351763438746]], X = [[-0.6452959767770758 + 0.6966324637732738im -5.5802569455239225e-14 + 3.19206004245041e-14im … 4.330519718502752e-14 + 3.2965992970967065e-14im 2.1697869972731307e-7 + 2.0657437185592672e-9im; 0.0037981187494740233 + 0.09928228183482676im -0.12955585313314483 + 0.10605932166370569im … 0.1741766142539025 - 0.11391991838669946im 0.19714306101419668 - 0.10089139940139415im; … ; 0.00799029984072417 - 0.008625967718447253im -0.033756254046516526 + 0.018485366093052437im … -0.010735386677841846 - 0.005237792911870193im -0.013715264392466193 + 0.04083431153173488im; 0.003798118749461587 + 0.0992822818347775im 0.03113438568001296 + 0.23063995424235237im … 0.0794284523902126 - 0.08130982337836722im 0.35800262344307215 + 0.2226812890367681im], [-0.2770492234876919 + 0.8785911018822414im -0.05608139419578369 + 0.1951317731732004im … -3.284087845128568e-11 - 3.176391194354056e-11im -4.949485032531385e-12 - 3.60789174938645e-11im; 0.02888120339906978 + 0.0554845547615453im -0.004363029343537957 - 0.007882397939308054im … 1.1592475088554515e-10 - 1.0405132558240722e-10im 2.2672253606166108e-11 + 2.6838298392557367e-10im; … ; 0.0014863186867258749 - 0.0047134814394474926im 0.023351351674633897 - 0.08124959665516505im … 0.05506822427560632 - 0.06532339924818537im -0.0028701851399664125 + 0.06165192905753592im; 0.053980972975454525 + 0.10370448245369841im 0.0484859862855471 + 0.08759644006280527im … -0.03206522558916187 - 0.3764328201799939im 0.18379499311387426 + 0.20174361554293707im], [0.0459625983358509 - 0.9243912061037762im 2.8936505731567136e-15 + 1.4283296406348907e-14im … -2.195750639518299e-12 + 1.0213924621737134e-12im 2.8738841304915264e-9 - 2.8055592627000437e-9im; -0.04599427390660426 - 0.05080745125222501im -0.039887536997110784 - 0.03366704966524961im … 0.012026557132292918 - 0.023007034367002563im -0.006601591532954891 - 0.0011798784663067522im; … ; -0.0005261487259415357 + 0.010581805053720182im 1.0902167984372474e-14 + 1.298970007176712e-13im … 3.35646355332743e-11 + 2.0357903008894356e-12im 0.03768774078004242 + 0.03976801946499178im; -0.10754087678381434 - 0.11879474096946387im 0.22408884858338854 + 0.18914204693020006im … 0.17237612952053152 - 0.32975884088524704im 0.15560562182577073 + 0.0038414556180324734im], [0.7534312615178704 - 0.2669470041058468im 1.6077026953413338e-14 - 2.848487698431566e-14im … 0.15568907645730465 - 0.09357351139657956im -3.8536816533636485e-6 + 6.040834051133071e-6im; 0.16863940818342038 - 0.3537133714323561im 0.5880298296122284 - 0.19894254486385735im … -0.04400720095713915 + 0.17659940608070557im -1.2383290207104295e-6 - 3.1853724015034105e-6im; … ; -0.01249035334978131 + 0.004425436768124809im -0.00022758210979518525 - 0.00011251895002275534im … -0.011186495209175445 + 0.00672384212349802im -0.009340907862852866 + 0.045142830496311855im; 0.028873393606826423 - 0.06056060980834482im -0.005033076677294662 + 0.0017027930083709742im … -0.03467958587830836 + 0.13916272359852697im 0.2587804362259357 + 0.39380027348297486im]], residual_norms = [[0.0, 3.448826425120572e-12, 6.959615285932699e-12, 3.1037835631998796e-12, 7.506448956258961e-12, 6.0913006933508045e-12, 3.878665818250078e-6], [0.0, 0.0, 8.395942073264172e-12, 0.0, 2.300814296827503e-10, 4.123099496963773e-9, 3.4105968098254982e-9], [0.0, 0.0, 5.700634677888393e-12, 5.768851028803205e-12, 1.0389775933096064e-11, 3.5024048035580056e-10, 3.628325439416381e-7], [0.0, 0.0, 0.0, 7.307009524077046e-12, 4.6034688821149424e-10, 1.546686889026616e-5, 5.450842373746507e-6]], n_iter = [3, 3, 3, 3], converged = 1, n_matvec = 103)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21069591272403723, 0.027606507028416674, 0.0023090391456850896, 0.0002573118640769891, 9.756560384847737e-6, 9.742218847103903e-7, 3.107356271203834e-8, 2.54455024101086e-9, 3.5736901618360554e-10, 6.298314583880671e-11], history_Etot = [-7.9052637438908135, -7.910544451353537, -7.910593449361972, -7.910594393153712, -7.910594396438723, -7.91059439648844, -7.910594396488504, -7.9105943964885075, -7.9105943964885075, -7.910594396488504], occupation_threshold = 1.0e-6, seed = 0xedbf80e9a6ab91ac, runtime_ns = 0x00000000803df0fa)