Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model
. Values up to1e-2
atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solver
toself_consistent_field
, e.g.solver = scf_anderson_solver(; m=15)
(::DFTK.var"#anderson#788"{DFTK.var"#anderson#787#789"{Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{m::Int64}}}}) (generic function with 1 method)
All keyword arguments are passed through to
DFTK.AndersonAcceleration
.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiff
parameter of theAdaptiveDiagtol
algorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBands
algorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
AdaptiveBands(4, 7, 1.0e-6, 0.01)
Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptive
instead ofself_consistent_field
:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668723157 -11.100308396742578 … -8.28984577241266 -11.100308396742639; -11.100308396742578 -9.13005782594801 … -9.130057795896716 -11.100308356759603; … ; -8.28984577241266 -9.130057795896716 … -4.149589921643383 -6.287956198199452; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577677;;; -11.10030839674258 -9.130057825948008 … -9.130057795896718 -11.100308356759605; -9.13005782594801 -6.903159481982299 … -9.13005782729769 -10.053883826552406; … ; -9.130057795896716 -9.13005782729769 … -5.294353669214516 -7.547399206521824; -11.100308356759603 -10.053883826552406 … -7.547399206521825 -10.05388382655251;;; -8.289845772412958 -6.307621931516883 … -8.289845781011913 -9.111848193526347; -6.307621931516885 -4.516655665815864 … -7.547399237611656 -7.547399206522056; … ; -8.28984578101191 -7.547399237611655 … -5.768969083581362 -7.547399237611727; -9.111848193526345 -7.547399206522055 … -7.547399237611728 -9.111848224927584;;; … ;;; -5.3010317182499245 -6.307621955789091 … -2.549703573276104 -3.8495821793879266; -6.307621955789092 -6.9031594952091275 … -3.329060698546369 -4.878419358630774; … ; -2.549703573276103 -3.3290606985463693 … -1.2567984709025786 -1.8141947460411507; -3.8495821793879257 -4.878419358630776 … -1.8141947460411503 -2.714767335322711;;; -8.289845772412662 -9.130057795896716 … -4.149589921643384 -6.287956198199451; -9.130057795896718 -9.130057827297689 … -5.294353669214515 -7.547399206521822; … ; -4.149589921643384 -5.294353669214516 … -1.9094492399153977 -2.8946123678523583; -6.287956198199452 -7.547399206521823 … -2.894612367852358 -4.485542759372138;;; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577676; -11.100308356759601 -10.053883826552406 … -7.547399206521826 -10.05388382655251; … ; -6.287956198199451 -7.547399206521826 … -2.8946123678523574 -4.485542759372138; -9.111848223577677 -10.05388382655251 … -4.485542759372139 -6.871104500135421])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668723157 -11.100308396742578 … -8.28984577241266 -11.100308396742639; -11.100308396742578 -9.13005782594801 … -9.130057795896716 -11.100308356759603; … ; -8.28984577241266 -9.130057795896716 … -4.149589921643383 -6.287956198199452; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577677;;; -11.10030839674258 -9.130057825948008 … -9.130057795896718 -11.100308356759605; -9.13005782594801 -6.903159481982299 … -9.13005782729769 -10.053883826552406; … ; -9.130057795896716 -9.13005782729769 … -5.294353669214516 -7.547399206521824; -11.100308356759603 -10.053883826552406 … -7.547399206521825 -10.05388382655251;;; -8.289845772412958 -6.307621931516883 … -8.289845781011913 -9.111848193526347; -6.307621931516885 -4.516655665815864 … -7.547399237611656 -7.547399206522056; … ; -8.28984578101191 -7.547399237611655 … -5.768969083581362 -7.547399237611727; -9.111848193526345 -7.547399206522055 … -7.547399237611728 -9.111848224927584;;; … ;;; -5.3010317182499245 -6.307621955789091 … -2.549703573276104 -3.8495821793879266; -6.307621955789092 -6.9031594952091275 … -3.329060698546369 -4.878419358630774; … ; -2.549703573276103 -3.3290606985463693 … -1.2567984709025786 -1.8141947460411507; -3.8495821793879257 -4.878419358630776 … -1.8141947460411503 -2.714767335322711;;; -8.289845772412662 -9.130057795896716 … -4.149589921643384 -6.287956198199451; -9.130057795896718 -9.130057827297689 … -5.294353669214515 -7.547399206521822; … ; -4.149589921643384 -5.294353669214516 … -1.9094492399153977 -2.8946123678523583; -6.287956198199452 -7.547399206521823 … -2.894612367852358 -4.485542759372138;;; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577676; -11.100308356759601 -10.053883826552406 … -7.547399206521826 -10.05388382655251; … ; -6.287956198199451 -7.547399206521826 … -2.8946123678523574 -4.485542759372138; -9.111848223577677 -10.05388382655251 … -4.485542759372139 -6.871104500135421]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.015279356405835358 + 0.017816716997042268im -0.031004420563217977 + 0.021350594667324203im … -0.0688036084186454 + 0.05647795499127867im -0.03478901398999824 + 0.04863652202377011im; -0.006121994310374862 + 0.005897922406379946im 0.021270903783488025 - 0.00784969263694276im … -0.0561034487647007 + 0.0860531830915714im 0.0008378295724593252 + 0.044342663636191396im; … ; -0.021610928773778307 - 0.011150354365383091im -0.02118162120836408 + 0.012969400434354805im … 0.021833762382863303 + 0.03465962828192801im 0.0327798203028161 - 0.014275610044035193im; -0.01633104545836931 + 0.037214672336116694im -0.01582220492004644 + 0.008674334811924114im … -0.021626133555420167 + 0.019442683594769528im -0.028639495799970903 + 0.01780429399284597im;;; 0.024227077171527077 - 0.0333732758843215im -0.024080879231313825 - 0.008115520868151im … -0.017193490792063906 + 0.0800814190115807im 0.03999606031813273 + 0.047745570743797094im; -0.05056327140092464 + 0.02151835125865957im -0.06735418848067312 - 0.060944865058858426im … -0.037160220017451236 + 0.05818979299448878im -0.05571458648753574 + 0.027193464893858505im; … ; 0.019851706228091452 + 0.1062720261267696im 0.08728807751505016 + 0.04134837012160444im … 0.05910376173984005 - 0.02833066397121185im -0.02789156271415357 + 0.004974064057285581im; 0.12178283003345736 + 0.05654358074683969im 0.06594586043361698 - 0.0504720270030535im … -0.022166666785957218 + 0.033956115313280785im 0.028158917540121106 + 0.1278803828944945im;;; -0.05943626460346252 + 0.0030333698627177975im -0.005081344414406479 + 0.08505666249444577im … 0.06902147036737107 + 0.0443117901948974im 0.04982713738776959 - 0.052360317178322235im; -0.03754642031747236 + 0.0692691541000418im -0.019688480774715564 + 0.01684610840698404im … -0.004014046161814153 + 0.010963788268333767im -0.06910072168889664 + 0.030980140610971634im; … ; 0.1583051443206246 + 0.047830514776857014im 0.08994807940540264 - 0.07274845859254399im … -0.014375549129383203 - 0.009985928811626067im 0.03404211579535876 + 0.10894376407038789im; 0.10975971468747116 - 0.09915921199477992im -0.03817613631480623 - 0.034991234936142444im … 0.02262894538875411 + 0.08578878401127152im 0.17207529235190971 + 0.05358050262475886im;;; … ;;; 0.03493812814002513 - 0.05529257269249141im -0.005831552456360606 + 0.04920501264348708im … 0.012861422100734293 + 0.10692040862989187im 0.14885220780316682 + 0.02718684631373339im; -0.017143469079616988 - 0.014209388126287803im 0.030217403948654336 + 0.05298624809071364im … 0.11598047466046743 + 0.06202682744920775im 0.11127765274505716 - 0.07928576655916658im; … ; 0.0036653715538978032 - 0.0009071343162112833im -0.0744673750075168 - 0.015245942865382615im … -0.10963664951515537 + 0.027343948732719017im -0.04113739881136111 + 0.05074211752914079im; 0.026221403403310847 - 0.01892123363585326im -0.06416647560345794 + 0.04326181995631995im … -0.07017083298532466 + 0.04660626055304855im 0.026091819836330236 + 0.07183930818111398im;;; -0.026529401267546215 + 0.012170586612204291im 0.0506226404128059 + 0.027183636960818366im … 0.0801500929982875 + 0.038779012003248604im 0.032852072657314074 - 0.06359865224511912im; 0.04535734212653648 + 0.10120810810876983im 0.08755211533950737 + 0.006574736940799052im … 0.10149728491102612 - 0.05937984304071967im -0.02681510393160782 - 0.03286438078928652im; … ; -0.07369101846047482 - 0.01812509380961633im -0.07414627863145584 + 0.06750088322611446im … -0.0412119572417563 + 0.01020684459908697im -0.046810621188018264 - 0.034694699654461175im; -0.053277938218497425 + 0.004867164989194893im 0.006570335369373188 + 0.07669708140546047im … -0.03287610601370134 + 0.033088260244315465im 0.0029226587038454904 - 0.012888853052798216im;;; 0.005861274805524674 + 0.019460009807458253im -0.035695935021565595 - 0.03299320534440282im … -0.017634317002125713 - 0.015741454572906967im -0.052159197121514636 - 0.006444181048652468im; 0.07090050532193704 + 0.02360214600691224im 0.023067203717685718 - 0.015124952148014771im … -0.05899625968448565 - 0.0239160310135973im -0.01578833202088826 + 0.08948454309738042im; … ; -0.027718203578063018 + 0.02987831663432157im 0.004814434018088877 + 0.01390952867828909im … -0.06036190409582807 - 0.019350270460241573im -0.04613702701381379 + 0.016944521843127544im; -0.0072734192295399736 - 0.0020691465650335694im 0.009865558561286902 - 0.023062295238611842im … -0.03581083770749892 + 0.01446990839348512im -0.042785910419417275 + 0.015437057877305968im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668723157 -11.100308396742578 … -8.28984577241266 -11.100308396742639; -11.100308396742578 -9.13005782594801 … -9.130057795896716 -11.100308356759603; … ; -8.28984577241266 -9.130057795896716 … -4.149589921643383 -6.287956198199452; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577677;;; -11.10030839674258 -9.130057825948008 … -9.130057795896718 -11.100308356759605; -9.13005782594801 -6.903159481982299 … -9.13005782729769 -10.053883826552406; … ; -9.130057795896716 -9.13005782729769 … -5.294353669214516 -7.547399206521824; -11.100308356759603 -10.053883826552406 … -7.547399206521825 -10.05388382655251;;; -8.289845772412958 -6.307621931516883 … -8.289845781011913 -9.111848193526347; -6.307621931516885 -4.516655665815864 … -7.547399237611656 -7.547399206522056; … ; -8.28984578101191 -7.547399237611655 … -5.768969083581362 -7.547399237611727; -9.111848193526345 -7.547399206522055 … -7.547399237611728 -9.111848224927584;;; … ;;; -5.3010317182499245 -6.307621955789091 … -2.549703573276104 -3.8495821793879266; -6.307621955789092 -6.9031594952091275 … -3.329060698546369 -4.878419358630774; … ; -2.549703573276103 -3.3290606985463693 … -1.2567984709025786 -1.8141947460411507; -3.8495821793879257 -4.878419358630776 … -1.8141947460411503 -2.714767335322711;;; -8.289845772412662 -9.130057795896716 … -4.149589921643384 -6.287956198199451; -9.130057795896718 -9.130057827297689 … -5.294353669214515 -7.547399206521822; … ; -4.149589921643384 -5.294353669214516 … -1.9094492399153977 -2.8946123678523583; -6.287956198199452 -7.547399206521823 … -2.894612367852358 -4.485542759372138;;; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577676; -11.100308356759601 -10.053883826552406 … -7.547399206521826 -10.05388382655251; … ; -6.287956198199451 -7.547399206521826 … -2.8946123678523574 -4.485542759372138; -9.111848223577677 -10.05388382655251 … -4.485542759372139 -6.871104500135421])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480333, 14.560189056480338, 9.498492431695329, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668723157 -11.100308396742578 … -8.28984577241266 -11.100308396742639; -11.100308396742578 -9.13005782594801 … -9.130057795896716 -11.100308356759603; … ; -8.28984577241266 -9.130057795896716 … -4.149589921643383 -6.287956198199452; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577677;;; -11.10030839674258 -9.130057825948008 … -9.130057795896718 -11.100308356759605; -9.13005782594801 -6.903159481982299 … -9.13005782729769 -10.053883826552406; … ; -9.130057795896716 -9.13005782729769 … -5.294353669214516 -7.547399206521824; -11.100308356759603 -10.053883826552406 … -7.547399206521825 -10.05388382655251;;; -8.289845772412958 -6.307621931516883 … -8.289845781011913 -9.111848193526347; -6.307621931516885 -4.516655665815864 … -7.547399237611656 -7.547399206522056; … ; -8.28984578101191 -7.547399237611655 … -5.768969083581362 -7.547399237611727; -9.111848193526345 -7.547399206522055 … -7.547399237611728 -9.111848224927584;;; … ;;; -5.3010317182499245 -6.307621955789091 … -2.549703573276104 -3.8495821793879266; -6.307621955789092 -6.9031594952091275 … -3.329060698546369 -4.878419358630774; … ; -2.549703573276103 -3.3290606985463693 … -1.2567984709025786 -1.8141947460411507; -3.8495821793879257 -4.878419358630776 … -1.8141947460411503 -2.714767335322711;;; -8.289845772412662 -9.130057795896716 … -4.149589921643384 -6.287956198199451; -9.130057795896718 -9.130057827297689 … -5.294353669214515 -7.547399206521822; … ; -4.149589921643384 -5.294353669214516 … -1.9094492399153977 -2.8946123678523583; -6.287956198199452 -7.547399206521823 … -2.894612367852358 -4.485542759372138;;; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577676; -11.100308356759601 -10.053883826552406 … -7.547399206521826 -10.05388382655251; … ; -6.287956198199451 -7.547399206521826 … -2.8946123678523574 -4.485542759372138; -9.111848223577677 -10.05388382655251 … -4.485542759372139 -6.871104500135421]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.007456246232465533 + 0.012914597308374338im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.015279356405835358 + 0.017816716997042268im -0.031004420563217977 + 0.021350594667324203im … -0.0688036084186454 + 0.05647795499127867im -0.03478901398999824 + 0.04863652202377011im; -0.006121994310374862 + 0.005897922406379946im 0.021270903783488025 - 0.00784969263694276im … -0.0561034487647007 + 0.0860531830915714im 0.0008378295724593252 + 0.044342663636191396im; … ; -0.021610928773778307 - 0.011150354365383091im -0.02118162120836408 + 0.012969400434354805im … 0.021833762382863303 + 0.03465962828192801im 0.0327798203028161 - 0.014275610044035193im; -0.01633104545836931 + 0.037214672336116694im -0.01582220492004644 + 0.008674334811924114im … -0.021626133555420167 + 0.019442683594769528im -0.028639495799970903 + 0.01780429399284597im;;; 0.024227077171527077 - 0.0333732758843215im -0.024080879231313825 - 0.008115520868151im … -0.017193490792063906 + 0.0800814190115807im 0.03999606031813273 + 0.047745570743797094im; -0.05056327140092464 + 0.02151835125865957im -0.06735418848067312 - 0.060944865058858426im … -0.037160220017451236 + 0.05818979299448878im -0.05571458648753574 + 0.027193464893858505im; … ; 0.019851706228091452 + 0.1062720261267696im 0.08728807751505016 + 0.04134837012160444im … 0.05910376173984005 - 0.02833066397121185im -0.02789156271415357 + 0.004974064057285581im; 0.12178283003345736 + 0.05654358074683969im 0.06594586043361698 - 0.0504720270030535im … -0.022166666785957218 + 0.033956115313280785im 0.028158917540121106 + 0.1278803828944945im;;; -0.05943626460346252 + 0.0030333698627177975im -0.005081344414406479 + 0.08505666249444577im … 0.06902147036737107 + 0.0443117901948974im 0.04982713738776959 - 0.052360317178322235im; -0.03754642031747236 + 0.0692691541000418im -0.019688480774715564 + 0.01684610840698404im … -0.004014046161814153 + 0.010963788268333767im -0.06910072168889664 + 0.030980140610971634im; … ; 0.1583051443206246 + 0.047830514776857014im 0.08994807940540264 - 0.07274845859254399im … -0.014375549129383203 - 0.009985928811626067im 0.03404211579535876 + 0.10894376407038789im; 0.10975971468747116 - 0.09915921199477992im -0.03817613631480623 - 0.034991234936142444im … 0.02262894538875411 + 0.08578878401127152im 0.17207529235190971 + 0.05358050262475886im;;; … ;;; 0.03493812814002513 - 0.05529257269249141im -0.005831552456360606 + 0.04920501264348708im … 0.012861422100734293 + 0.10692040862989187im 0.14885220780316682 + 0.02718684631373339im; -0.017143469079616988 - 0.014209388126287803im 0.030217403948654336 + 0.05298624809071364im … 0.11598047466046743 + 0.06202682744920775im 0.11127765274505716 - 0.07928576655916658im; … ; 0.0036653715538978032 - 0.0009071343162112833im -0.0744673750075168 - 0.015245942865382615im … -0.10963664951515537 + 0.027343948732719017im -0.04113739881136111 + 0.05074211752914079im; 0.026221403403310847 - 0.01892123363585326im -0.06416647560345794 + 0.04326181995631995im … -0.07017083298532466 + 0.04660626055304855im 0.026091819836330236 + 0.07183930818111398im;;; -0.026529401267546215 + 0.012170586612204291im 0.0506226404128059 + 0.027183636960818366im … 0.0801500929982875 + 0.038779012003248604im 0.032852072657314074 - 0.06359865224511912im; 0.04535734212653648 + 0.10120810810876983im 0.08755211533950737 + 0.006574736940799052im … 0.10149728491102612 - 0.05937984304071967im -0.02681510393160782 - 0.03286438078928652im; … ; -0.07369101846047482 - 0.01812509380961633im -0.07414627863145584 + 0.06750088322611446im … -0.0412119572417563 + 0.01020684459908697im -0.046810621188018264 - 0.034694699654461175im; -0.053277938218497425 + 0.004867164989194893im 0.006570335369373188 + 0.07669708140546047im … -0.03287610601370134 + 0.033088260244315465im 0.0029226587038454904 - 0.012888853052798216im;;; 0.005861274805524674 + 0.019460009807458253im -0.035695935021565595 - 0.03299320534440282im … -0.017634317002125713 - 0.015741454572906967im -0.052159197121514636 - 0.006444181048652468im; 0.07090050532193704 + 0.02360214600691224im 0.023067203717685718 - 0.015124952148014771im … -0.05899625968448565 - 0.0239160310135973im -0.01578833202088826 + 0.08948454309738042im; … ; -0.027718203578063018 + 0.02987831663432157im 0.004814434018088877 + 0.01390952867828909im … -0.06036190409582807 - 0.019350270460241573im -0.04613702701381379 + 0.016944521843127544im; -0.0072734192295399736 - 0.0020691465650335694im 0.009865558561286902 - 0.023062295238611842im … -0.03581083770749892 + 0.01446990839348512im -0.042785910419417275 + 0.015437057877305968im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668723157 -11.100308396742578 … -8.28984577241266 -11.100308396742639; -11.100308396742578 -9.13005782594801 … -9.130057795896716 -11.100308356759603; … ; -8.28984577241266 -9.130057795896716 … -4.149589921643383 -6.287956198199452; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577677;;; -11.10030839674258 -9.130057825948008 … -9.130057795896718 -11.100308356759605; -9.13005782594801 -6.903159481982299 … -9.13005782729769 -10.053883826552406; … ; -9.130057795896716 -9.13005782729769 … -5.294353669214516 -7.547399206521824; -11.100308356759603 -10.053883826552406 … -7.547399206521825 -10.05388382655251;;; -8.289845772412958 -6.307621931516883 … -8.289845781011913 -9.111848193526347; -6.307621931516885 -4.516655665815864 … -7.547399237611656 -7.547399206522056; … ; -8.28984578101191 -7.547399237611655 … -5.768969083581362 -7.547399237611727; -9.111848193526345 -7.547399206522055 … -7.547399237611728 -9.111848224927584;;; … ;;; -5.3010317182499245 -6.307621955789091 … -2.549703573276104 -3.8495821793879266; -6.307621955789092 -6.9031594952091275 … -3.329060698546369 -4.878419358630774; … ; -2.549703573276103 -3.3290606985463693 … -1.2567984709025786 -1.8141947460411507; -3.8495821793879257 -4.878419358630776 … -1.8141947460411503 -2.714767335322711;;; -8.289845772412662 -9.130057795896716 … -4.149589921643384 -6.287956198199451; -9.130057795896718 -9.130057827297689 … -5.294353669214515 -7.547399206521822; … ; -4.149589921643384 -5.294353669214516 … -1.9094492399153977 -2.8946123678523583; -6.287956198199452 -7.547399206521823 … -2.894612367852358 -4.485542759372138;;; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577676; -11.100308356759601 -10.053883826552406 … -7.547399206521826 -10.05388382655251; … ; -6.287956198199451 -7.547399206521826 … -2.8946123678523574 -4.485542759372138; -9.111848223577677 -10.05388382655251 … -4.485542759372139 -6.871104500135421])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870593, 2.8328837076986058, 5.8948977152846, 10.08173319504504, 12.893786875481156, 8.082050577846022, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668723157 -11.100308396742578 … -8.28984577241266 -11.100308396742639; -11.100308396742578 -9.13005782594801 … -9.130057795896716 -11.100308356759603; … ; -8.28984577241266 -9.130057795896716 … -4.149589921643383 -6.287956198199452; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577677;;; -11.10030839674258 -9.130057825948008 … -9.130057795896718 -11.100308356759605; -9.13005782594801 -6.903159481982299 … -9.13005782729769 -10.053883826552406; … ; -9.130057795896716 -9.13005782729769 … -5.294353669214516 -7.547399206521824; -11.100308356759603 -10.053883826552406 … -7.547399206521825 -10.05388382655251;;; -8.289845772412958 -6.307621931516883 … -8.289845781011913 -9.111848193526347; -6.307621931516885 -4.516655665815864 … -7.547399237611656 -7.547399206522056; … ; -8.28984578101191 -7.547399237611655 … -5.768969083581362 -7.547399237611727; -9.111848193526345 -7.547399206522055 … -7.547399237611728 -9.111848224927584;;; … ;;; -5.3010317182499245 -6.307621955789091 … -2.549703573276104 -3.8495821793879266; -6.307621955789092 -6.9031594952091275 … -3.329060698546369 -4.878419358630774; … ; -2.549703573276103 -3.3290606985463693 … -1.2567984709025786 -1.8141947460411507; -3.8495821793879257 -4.878419358630776 … -1.8141947460411503 -2.714767335322711;;; -8.289845772412662 -9.130057795896716 … -4.149589921643384 -6.287956198199451; -9.130057795896718 -9.130057827297689 … -5.294353669214515 -7.547399206521822; … ; -4.149589921643384 -5.294353669214516 … -1.9094492399153977 -2.8946123678523583; -6.287956198199452 -7.547399206521823 … -2.894612367852358 -4.485542759372138;;; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577676; -11.100308356759601 -10.053883826552406 … -7.547399206521826 -10.05388382655251; … ; -6.287956198199451 -7.547399206521826 … -2.8946123678523574 -4.485542759372138; -9.111848223577677 -10.05388382655251 … -4.485542759372139 -6.871104500135421]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im 5.710372280586092e-19 + 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042238 + 0.06714655062833207im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 0.0 - 0.0im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.015279356405835358 + 0.017816716997042268im -0.031004420563217977 + 0.021350594667324203im … -0.0688036084186454 + 0.05647795499127867im -0.03478901398999824 + 0.04863652202377011im; -0.006121994310374862 + 0.005897922406379946im 0.021270903783488025 - 0.00784969263694276im … -0.0561034487647007 + 0.0860531830915714im 0.0008378295724593252 + 0.044342663636191396im; … ; -0.021610928773778307 - 0.011150354365383091im -0.02118162120836408 + 0.012969400434354805im … 0.021833762382863303 + 0.03465962828192801im 0.0327798203028161 - 0.014275610044035193im; -0.01633104545836931 + 0.037214672336116694im -0.01582220492004644 + 0.008674334811924114im … -0.021626133555420167 + 0.019442683594769528im -0.028639495799970903 + 0.01780429399284597im;;; 0.024227077171527077 - 0.0333732758843215im -0.024080879231313825 - 0.008115520868151im … -0.017193490792063906 + 0.0800814190115807im 0.03999606031813273 + 0.047745570743797094im; -0.05056327140092464 + 0.02151835125865957im -0.06735418848067312 - 0.060944865058858426im … -0.037160220017451236 + 0.05818979299448878im -0.05571458648753574 + 0.027193464893858505im; … ; 0.019851706228091452 + 0.1062720261267696im 0.08728807751505016 + 0.04134837012160444im … 0.05910376173984005 - 0.02833066397121185im -0.02789156271415357 + 0.004974064057285581im; 0.12178283003345736 + 0.05654358074683969im 0.06594586043361698 - 0.0504720270030535im … -0.022166666785957218 + 0.033956115313280785im 0.028158917540121106 + 0.1278803828944945im;;; -0.05943626460346252 + 0.0030333698627177975im -0.005081344414406479 + 0.08505666249444577im … 0.06902147036737107 + 0.0443117901948974im 0.04982713738776959 - 0.052360317178322235im; -0.03754642031747236 + 0.0692691541000418im -0.019688480774715564 + 0.01684610840698404im … -0.004014046161814153 + 0.010963788268333767im -0.06910072168889664 + 0.030980140610971634im; … ; 0.1583051443206246 + 0.047830514776857014im 0.08994807940540264 - 0.07274845859254399im … -0.014375549129383203 - 0.009985928811626067im 0.03404211579535876 + 0.10894376407038789im; 0.10975971468747116 - 0.09915921199477992im -0.03817613631480623 - 0.034991234936142444im … 0.02262894538875411 + 0.08578878401127152im 0.17207529235190971 + 0.05358050262475886im;;; … ;;; 0.03493812814002513 - 0.05529257269249141im -0.005831552456360606 + 0.04920501264348708im … 0.012861422100734293 + 0.10692040862989187im 0.14885220780316682 + 0.02718684631373339im; -0.017143469079616988 - 0.014209388126287803im 0.030217403948654336 + 0.05298624809071364im … 0.11598047466046743 + 0.06202682744920775im 0.11127765274505716 - 0.07928576655916658im; … ; 0.0036653715538978032 - 0.0009071343162112833im -0.0744673750075168 - 0.015245942865382615im … -0.10963664951515537 + 0.027343948732719017im -0.04113739881136111 + 0.05074211752914079im; 0.026221403403310847 - 0.01892123363585326im -0.06416647560345794 + 0.04326181995631995im … -0.07017083298532466 + 0.04660626055304855im 0.026091819836330236 + 0.07183930818111398im;;; -0.026529401267546215 + 0.012170586612204291im 0.0506226404128059 + 0.027183636960818366im … 0.0801500929982875 + 0.038779012003248604im 0.032852072657314074 - 0.06359865224511912im; 0.04535734212653648 + 0.10120810810876983im 0.08755211533950737 + 0.006574736940799052im … 0.10149728491102612 - 0.05937984304071967im -0.02681510393160782 - 0.03286438078928652im; … ; -0.07369101846047482 - 0.01812509380961633im -0.07414627863145584 + 0.06750088322611446im … -0.0412119572417563 + 0.01020684459908697im -0.046810621188018264 - 0.034694699654461175im; -0.053277938218497425 + 0.004867164989194893im 0.006570335369373188 + 0.07669708140546047im … -0.03287610601370134 + 0.033088260244315465im 0.0029226587038454904 - 0.012888853052798216im;;; 0.005861274805524674 + 0.019460009807458253im -0.035695935021565595 - 0.03299320534440282im … -0.017634317002125713 - 0.015741454572906967im -0.052159197121514636 - 0.006444181048652468im; 0.07090050532193704 + 0.02360214600691224im 0.023067203717685718 - 0.015124952148014771im … -0.05899625968448565 - 0.0239160310135973im -0.01578833202088826 + 0.08948454309738042im; … ; -0.027718203578063018 + 0.02987831663432157im 0.004814434018088877 + 0.01390952867828909im … -0.06036190409582807 - 0.019350270460241573im -0.04613702701381379 + 0.016944521843127544im; -0.0072734192295399736 - 0.0020691465650335694im 0.009865558561286902 - 0.023062295238611842im … -0.03581083770749892 + 0.01446990839348512im -0.042785910419417275 + 0.015437057877305968im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668723157 -11.100308396742578 … -8.28984577241266 -11.100308396742639; -11.100308396742578 -9.13005782594801 … -9.130057795896716 -11.100308356759603; … ; -8.28984577241266 -9.130057795896716 … -4.149589921643383 -6.287956198199452; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577677;;; -11.10030839674258 -9.130057825948008 … -9.130057795896718 -11.100308356759605; -9.13005782594801 -6.903159481982299 … -9.13005782729769 -10.053883826552406; … ; -9.130057795896716 -9.13005782729769 … -5.294353669214516 -7.547399206521824; -11.100308356759603 -10.053883826552406 … -7.547399206521825 -10.05388382655251;;; -8.289845772412958 -6.307621931516883 … -8.289845781011913 -9.111848193526347; -6.307621931516885 -4.516655665815864 … -7.547399237611656 -7.547399206522056; … ; -8.28984578101191 -7.547399237611655 … -5.768969083581362 -7.547399237611727; -9.111848193526345 -7.547399206522055 … -7.547399237611728 -9.111848224927584;;; … ;;; -5.3010317182499245 -6.307621955789091 … -2.549703573276104 -3.8495821793879266; -6.307621955789092 -6.9031594952091275 … -3.329060698546369 -4.878419358630774; … ; -2.549703573276103 -3.3290606985463693 … -1.2567984709025786 -1.8141947460411507; -3.8495821793879257 -4.878419358630776 … -1.8141947460411503 -2.714767335322711;;; -8.289845772412662 -9.130057795896716 … -4.149589921643384 -6.287956198199451; -9.130057795896718 -9.130057827297689 … -5.294353669214515 -7.547399206521822; … ; -4.149589921643384 -5.294353669214516 … -1.9094492399153977 -2.8946123678523583; -6.287956198199452 -7.547399206521823 … -2.894612367852358 -4.485542759372138;;; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577676; -11.100308356759601 -10.053883826552406 … -7.547399206521826 -10.05388382655251; … ; -6.287956198199451 -7.547399206521826 … -2.8946123678523574 -4.485542759372138; -9.111848223577677 -10.05388382655251 … -4.485542759372139 -6.871104500135421])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.1655293782964735, 11.72730534878173, 11.164894612694503, 6.72809880578419, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.228178151484434, 10.415013631244872, 13.227067311680987, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.729050954187141]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668723157 -11.100308396742578 … -8.28984577241266 -11.100308396742639; -11.100308396742578 -9.13005782594801 … -9.130057795896716 -11.100308356759603; … ; -8.28984577241266 -9.130057795896716 … -4.149589921643383 -6.287956198199452; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577677;;; -11.10030839674258 -9.130057825948008 … -9.130057795896718 -11.100308356759605; -9.13005782594801 -6.903159481982299 … -9.13005782729769 -10.053883826552406; … ; -9.130057795896716 -9.13005782729769 … -5.294353669214516 -7.547399206521824; -11.100308356759603 -10.053883826552406 … -7.547399206521825 -10.05388382655251;;; -8.289845772412958 -6.307621931516883 … -8.289845781011913 -9.111848193526347; -6.307621931516885 -4.516655665815864 … -7.547399237611656 -7.547399206522056; … ; -8.28984578101191 -7.547399237611655 … -5.768969083581362 -7.547399237611727; -9.111848193526345 -7.547399206522055 … -7.547399237611728 -9.111848224927584;;; … ;;; -5.3010317182499245 -6.307621955789091 … -2.549703573276104 -3.8495821793879266; -6.307621955789092 -6.9031594952091275 … -3.329060698546369 -4.878419358630774; … ; -2.549703573276103 -3.3290606985463693 … -1.2567984709025786 -1.8141947460411507; -3.8495821793879257 -4.878419358630776 … -1.8141947460411503 -2.714767335322711;;; -8.289845772412662 -9.130057795896716 … -4.149589921643384 -6.287956198199451; -9.130057795896718 -9.130057827297689 … -5.294353669214515 -7.547399206521822; … ; -4.149589921643384 -5.294353669214516 … -1.9094492399153977 -2.8946123678523583; -6.287956198199452 -7.547399206521823 … -2.894612367852358 -4.485542759372138;;; -11.100308396742639 -11.100308356759603 … -6.287956198199453 -9.111848223577676; -11.100308356759601 -10.053883826552406 … -7.547399206521826 -10.05388382655251; … ; -6.287956198199451 -7.547399206521826 … -2.8946123678523574 -4.485542759372138; -9.111848223577677 -10.05388382655251 … -4.485542759372139 -6.871104500135421]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … 0.0 - 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.01813069317950125 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474504im 0.0 - 0.023021584211581677im; 0.09798590385967748 + 0.0im 0.13861415332258226 + 0.0im … 0.048374574773583326 + 0.0im 0.01612485825786111 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.015279356405835358 + 0.017816716997042268im -0.031004420563217977 + 0.021350594667324203im … -0.0688036084186454 + 0.05647795499127867im -0.03478901398999824 + 0.04863652202377011im; -0.006121994310374862 + 0.005897922406379946im 0.021270903783488025 - 0.00784969263694276im … -0.0561034487647007 + 0.0860531830915714im 0.0008378295724593252 + 0.044342663636191396im; … ; -0.021610928773778307 - 0.011150354365383091im -0.02118162120836408 + 0.012969400434354805im … 0.021833762382863303 + 0.03465962828192801im 0.0327798203028161 - 0.014275610044035193im; -0.01633104545836931 + 0.037214672336116694im -0.01582220492004644 + 0.008674334811924114im … -0.021626133555420167 + 0.019442683594769528im -0.028639495799970903 + 0.01780429399284597im;;; 0.024227077171527077 - 0.0333732758843215im -0.024080879231313825 - 0.008115520868151im … -0.017193490792063906 + 0.0800814190115807im 0.03999606031813273 + 0.047745570743797094im; -0.05056327140092464 + 0.02151835125865957im -0.06735418848067312 - 0.060944865058858426im … -0.037160220017451236 + 0.05818979299448878im -0.05571458648753574 + 0.027193464893858505im; … ; 0.019851706228091452 + 0.1062720261267696im 0.08728807751505016 + 0.04134837012160444im … 0.05910376173984005 - 0.02833066397121185im -0.02789156271415357 + 0.004974064057285581im; 0.12178283003345736 + 0.05654358074683969im 0.06594586043361698 - 0.0504720270030535im … -0.022166666785957218 + 0.033956115313280785im 0.028158917540121106 + 0.1278803828944945im;;; -0.05943626460346252 + 0.0030333698627177975im -0.005081344414406479 + 0.08505666249444577im … 0.06902147036737107 + 0.0443117901948974im 0.04982713738776959 - 0.052360317178322235im; -0.03754642031747236 + 0.0692691541000418im -0.019688480774715564 + 0.01684610840698404im … -0.004014046161814153 + 0.010963788268333767im -0.06910072168889664 + 0.030980140610971634im; … ; 0.1583051443206246 + 0.047830514776857014im 0.08994807940540264 - 0.07274845859254399im … -0.014375549129383203 - 0.009985928811626067im 0.03404211579535876 + 0.10894376407038789im; 0.10975971468747116 - 0.09915921199477992im -0.03817613631480623 - 0.034991234936142444im … 0.02262894538875411 + 0.08578878401127152im 0.17207529235190971 + 0.05358050262475886im;;; … ;;; 0.03493812814002513 - 0.05529257269249141im -0.005831552456360606 + 0.04920501264348708im … 0.012861422100734293 + 0.10692040862989187im 0.14885220780316682 + 0.02718684631373339im; -0.017143469079616988 - 0.014209388126287803im 0.030217403948654336 + 0.05298624809071364im … 0.11598047466046743 + 0.06202682744920775im 0.11127765274505716 - 0.07928576655916658im; … ; 0.0036653715538978032 - 0.0009071343162112833im -0.0744673750075168 - 0.015245942865382615im … -0.10963664951515537 + 0.027343948732719017im -0.04113739881136111 + 0.05074211752914079im; 0.026221403403310847 - 0.01892123363585326im -0.06416647560345794 + 0.04326181995631995im … -0.07017083298532466 + 0.04660626055304855im 0.026091819836330236 + 0.07183930818111398im;;; -0.026529401267546215 + 0.012170586612204291im 0.0506226404128059 + 0.027183636960818366im … 0.0801500929982875 + 0.038779012003248604im 0.032852072657314074 - 0.06359865224511912im; 0.04535734212653648 + 0.10120810810876983im 0.08755211533950737 + 0.006574736940799052im … 0.10149728491102612 - 0.05937984304071967im -0.02681510393160782 - 0.03286438078928652im; … ; -0.07369101846047482 - 0.01812509380961633im -0.07414627863145584 + 0.06750088322611446im … -0.0412119572417563 + 0.01020684459908697im -0.046810621188018264 - 0.034694699654461175im; -0.053277938218497425 + 0.004867164989194893im 0.006570335369373188 + 0.07669708140546047im … -0.03287610601370134 + 0.033088260244315465im 0.0029226587038454904 - 0.012888853052798216im;;; 0.005861274805524674 + 0.019460009807458253im -0.035695935021565595 - 0.03299320534440282im … -0.017634317002125713 - 0.015741454572906967im -0.052159197121514636 - 0.006444181048652468im; 0.07090050532193704 + 0.02360214600691224im 0.023067203717685718 - 0.015124952148014771im … -0.05899625968448565 - 0.0239160310135973im -0.01578833202088826 + 0.08948454309738042im; … ; -0.027718203578063018 + 0.02987831663432157im 0.004814434018088877 + 0.01390952867828909im … -0.06036190409582807 - 0.019350270460241573im -0.04613702701381379 + 0.016944521843127544im; -0.0072734192295399736 - 0.0020691465650335694im 0.009865558561286902 - 0.023062295238611842im … -0.03581083770749892 + 0.01446990839348512im -0.042785910419417275 + 0.015437057877305968im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488506), converged = true, ρ = [7.589784542449581e-5 0.0011262712728449275 … 0.0066970375501085 0.0011262712728449325; 0.0011262712728449258 0.005274334457394517 … 0.005274334457394564 0.001126271272844941; … ; 0.006697037550108508 0.005274334457394548 … 0.023244754191070593 0.01225898682527167; 0.0011262712728449392 0.001126271272844924 … 0.012258986825271673 0.00377000862992071;;; 0.0011262712728449243 0.005274334457394531 … 0.0052743344573945505 0.0011262712728449355; 0.005274334457394526 0.014620065304746407 … 0.005274334457394563 0.002588080874869408; … ; 0.005274334457394558 0.005274334457394547 … 0.018107686646166535 0.008922003044775669; 0.0011262712728449405 0.002588080874869393 … 0.008922003044775672 0.0025880808748694156;;; 0.006697037550108468 0.016412109101625445 … 0.006697037550108493 0.0037700086299206946; 0.016412109101625442 0.03127783931593934 … 0.008922003044775651 0.008922003044775624; … ; 0.006697037550108502 0.00892200304477564 … 0.016476756359475684 0.008922003044775664; 0.003770008629920699 0.008922003044775617 … 0.008922003044775667 0.0037700086299207068;;; … ;;; 0.0198538398534231 0.016412109101625456 … 0.03715667363566972 0.027190800686592808; 0.016412109101625452 0.01462006530474641 … 0.03230127212644992 0.022322100931733476; … ; 0.037156673635669726 0.032301272126449905 … 0.04629698070144687 0.04263658273143695; 0.027190800686592815 0.02232210093173347 … 0.04263658273143695 0.034772229142001135;;; 0.006697037550108475 0.005274334457394527 … 0.023244754191070558 0.012258986825271642; 0.005274334457394527 0.005274334457394518 … 0.018107686646166514 0.00892200304477563; … ; 0.02324475419107057 0.0181076866461665 … 0.040371110335576346 0.03149160381139489; 0.012258986825271647 0.008922003044775624 … 0.03149160381139489 0.0200471634327588;;; 0.0011262712728449273 0.0011262712728449284 … 0.012258986825271647 0.0037700086299206985; 0.0011262712728449266 0.002588080874869389 … 0.008922003044775655 0.0025880808748694104; … ; 0.012258986825271658 0.008922003044775643 … 0.031491603811394896 0.02004716343275882; 0.0037700086299207037 0.002588080874869395 … 0.02004716343275882 0.00895260349679933;;;;], eigenvalues = [[-0.17836835653944175, 0.2624919449912585, 0.2624919449912586, 0.2624919449912587, 0.354692148167661, 0.3546921481676614, 0.3546921481676694], [-0.12755037617931722, 0.0647532059467272, 0.22545166517397225, 0.2254516651739727, 0.3219776496113782, 0.3892227690848379, 0.389222769084839], [-0.10818729216521103, 0.07755003473419216, 0.17278328011456118, 0.17278328011456145, 0.28435185361998494, 0.3305476484332862, 0.526723242638797], [-0.057773253744519276, 0.012724782205363223, 0.09766073750127746, 0.1841782533295668, 0.31522841796006273, 0.4720312183533093, 0.49791351759275126]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.27342189930562183, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.47070182851841286 + 0.8247081155514288im 7.0675524618268825e-15 - 8.497627849152219e-14im … -6.8222284186815534e-12 - 1.805030773278777e-11im -7.115071100233649e-10 - 1.8796858837313927e-9im; 0.026191077630171627 + 0.09584062105896263im 0.285067919593829 + 0.17416116953403926im … 0.26884682816656846 + 0.18777059180248795im 0.06732638326570788 + 0.21928898708093347im; … ; 0.005828408793645891 - 0.010211849076334881im -0.008544869568807614 + 0.01188056551094666im … 0.01816553472514036 - 0.051603272322770045im -0.03239349025228589 - 0.06542561214791491im; 0.026191077630202408 + 0.09584062105909848im -0.26356922936645133 - 0.04251844514996943im … 0.07050409031258975 - 0.22607726986436177im -0.5129074937932893 + 0.023352279567441583im], [0.14440027838744002 - 0.9098500734422055im -0.1987598909102596 + 0.04142508228202393im … -2.0802342236096834e-11 - 9.007499356650252e-12im -1.3691775503153927e-12 + 4.706859479037517e-12im; -0.03675074340929071 - 0.05061662361086117im 0.004936745889162406 - 0.007536362673855756im … 2.741398583282964e-11 + 1.3991554522152005e-10im 5.112474564061525e-12 - 2.8505414596061874e-11im; … ; -0.0007746812260698645 + 0.004881180135595285im 0.08276028401263451 - 0.01724870928039252im … -0.03425569675107762 - 0.0105035831674028im -0.08837583912346034 + 0.04488637965804728im; -0.06868968925537974 - 0.09460598138823155im -0.05486165107579013 + 0.08375097861573771im … -0.13995045138768206 + 0.07426658811656779im -0.13598005778406172 + 0.41667577511666676im], [-0.6156451513415003 + 0.691080827397998im 8.44230451318242e-15 + 5.229862961442271e-15im … -1.0362344390280513e-11 - 1.8665700215393567e-11im 2.007333367727636e-9 - 4.809756712686662e-11im; 0.0039497907015181586 + 0.06841980333503239im 0.004241975023671631 + 0.05202395110764971im … -0.025947965053343718 + 0.000815336346409281im 0.002948072093604194 - 0.0023507339874588792im; … ; 0.0070474891263833965 - 0.007911025703516613im 6.81505817936716e-14 + 6.497268662459079e-14im … -1.191297977612487e-10 - 2.46877537084408e-10im 0.02537277853722064 - 0.04750207946081573im; 0.009235148618987617 + 0.15997481892945778im -0.023831486482270386 - 0.29227142561069064im … -0.3719110865382239 + 0.011686182878281453im -0.04409930195353943 - 0.14928701346106257im], [0.5263185651556429 + 0.6015880125182171im -2.056919328454491e-15 + 5.921248837902997e-15im … 0.13508414991430637 - 0.12143436959544296im -1.809708707503426e-6 + 2.455436427011511e-6im; 0.3909879813113723 + 0.026092098283012614im -0.024879770259866922 - 0.6202726930167597im … -0.009672460709561586 + 0.18173824590114374im -5.82429215641847e-7 - 1.8484136018432184e-6im; … ; -0.008725288144025088 - 0.009973102035017244im -0.00017217983992940655 + 0.0001865696477480964im … -0.009705922226555579 + 0.008724304655315944im -0.011208889478420744 - 0.044715192012585454im; 0.06694253734362259 + 0.0044673272509224374im 0.0002129514271454088 + 0.005309050438180945im … -0.007619133713872276 + 0.1431942620178229im -0.40423407518839416 - 0.24219947540707884im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653944175, 0.2624919449912585, 0.2624919449912586, 0.2624919449912587, 0.354692148167661, 0.3546921481676614, 0.3546921481676694], [-0.12755037617931722, 0.0647532059467272, 0.22545166517397225, 0.2254516651739727, 0.3219776496113782, 0.3892227690848379, 0.389222769084839], [-0.10818729216521103, 0.07755003473419216, 0.17278328011456118, 0.17278328011456145, 0.28435185361998494, 0.3305476484332862, 0.526723242638797], [-0.057773253744519276, 0.012724782205363223, 0.09766073750127746, 0.1841782533295668, 0.31522841796006273, 0.4720312183533093, 0.49791351759275126]], X = [[-0.47070182851841286 + 0.8247081155514288im 7.0675524618268825e-15 - 8.497627849152219e-14im … -6.8222284186815534e-12 - 1.805030773278777e-11im -7.115071100233649e-10 - 1.8796858837313927e-9im; 0.026191077630171627 + 0.09584062105896263im 0.285067919593829 + 0.17416116953403926im … 0.26884682816656846 + 0.18777059180248795im 0.06732638326570788 + 0.21928898708093347im; … ; 0.005828408793645891 - 0.010211849076334881im -0.008544869568807614 + 0.01188056551094666im … 0.01816553472514036 - 0.051603272322770045im -0.03239349025228589 - 0.06542561214791491im; 0.026191077630202408 + 0.09584062105909848im -0.26356922936645133 - 0.04251844514996943im … 0.07050409031258975 - 0.22607726986436177im -0.5129074937932893 + 0.023352279567441583im], [0.14440027838744002 - 0.9098500734422055im -0.1987598909102596 + 0.04142508228202393im … -2.0802342236096834e-11 - 9.007499356650252e-12im -1.3691775503153927e-12 + 4.706859479037517e-12im; -0.03675074340929071 - 0.05061662361086117im 0.004936745889162406 - 0.007536362673855756im … 2.741398583282964e-11 + 1.3991554522152005e-10im 5.112474564061525e-12 - 2.8505414596061874e-11im; … ; -0.0007746812260698645 + 0.004881180135595285im 0.08276028401263451 - 0.01724870928039252im … -0.03425569675107762 - 0.0105035831674028im -0.08837583912346034 + 0.04488637965804728im; -0.06868968925537974 - 0.09460598138823155im -0.05486165107579013 + 0.08375097861573771im … -0.13995045138768206 + 0.07426658811656779im -0.13598005778406172 + 0.41667577511666676im], [-0.6156451513415003 + 0.691080827397998im 8.44230451318242e-15 + 5.229862961442271e-15im … -1.0362344390280513e-11 - 1.8665700215393567e-11im 2.007333367727636e-9 - 4.809756712686662e-11im; 0.0039497907015181586 + 0.06841980333503239im 0.004241975023671631 + 0.05202395110764971im … -0.025947965053343718 + 0.000815336346409281im 0.002948072093604194 - 0.0023507339874588792im; … ; 0.0070474891263833965 - 0.007911025703516613im 6.81505817936716e-14 + 6.497268662459079e-14im … -1.191297977612487e-10 - 2.46877537084408e-10im 0.02537277853722064 - 0.04750207946081573im; 0.009235148618987617 + 0.15997481892945778im -0.023831486482270386 - 0.29227142561069064im … -0.3719110865382239 + 0.011686182878281453im -0.04409930195353943 - 0.14928701346106257im], [0.5263185651556429 + 0.6015880125182171im -2.056919328454491e-15 + 5.921248837902997e-15im … 0.13508414991430637 - 0.12143436959544296im -1.809708707503426e-6 + 2.455436427011511e-6im; 0.3909879813113723 + 0.026092098283012614im -0.024879770259866922 - 0.6202726930167597im … -0.009672460709561586 + 0.18173824590114374im -5.82429215641847e-7 - 1.8484136018432184e-6im; … ; -0.008725288144025088 - 0.009973102035017244im -0.00017217983992940655 + 0.0001865696477480964im … -0.009705922226555579 + 0.008724304655315944im -0.011208889478420744 - 0.044715192012585454im; 0.06694253734362259 + 0.0044673272509224374im 0.0002129514271454088 + 0.005309050438180945im … -0.007619133713872276 + 0.1431942620178229im -0.40423407518839416 - 0.24219947540707884im]], residual_norms = [[0.0, 0.0, 3.4173284596950474e-12, 1.2983657126436839e-12, 8.823413617672795e-10, 1.2308861515753139e-9, 1.2827543022501544e-7], [0.0, 0.0, 2.113622303861273e-12, 2.22364855117029e-12, 1.2145264842869528e-10, 1.0759522349658922e-9, 1.089052450498844e-9], [0.0, 0.0, 0.0, 3.2490785807688413e-12, 4.702433866723657e-11, 1.4535960692436681e-9, 3.9645274527218603e-7], [8.66884459657121e-13, 7.991218651369825e-13, 9.835511089529833e-13, 3.4037932985938982e-12, 2.4176008710243355e-10, 1.2974225757656833e-5, 4.6748085921066435e-6]], n_iter = [5, 4, 3, 3], converged = 1, n_matvec = 121)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21069756073230753, 0.027615352684445624, 0.0023106242785244126, 0.00025737181065303065, 9.367472650088539e-6, 8.835682181734044e-7, 3.439239759316668e-8, 1.888103716142209e-9, 1.856387662755867e-10, 3.730487390398714e-11], history_Etot = [-7.90526049039919, -7.910544321709261, -7.910593453950158, -7.910594393229452, -7.910594396444612, -7.910594396488433, -7.9105943964885, -7.9105943964885075, -7.910594396488506, -7.910594396488506], occupation_threshold = 1.0e-6, runtime_ns = 0x000000009cfab91f)