Achieving DFT convergence
Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.
Even if modelling an insulator, add a temperature to your
Model. Values up to1e-2atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.Increase the history size of the Anderson acceleration by passing a custom
solvertoself_consistent_field, e.g.solver = scf_anderson_solver(; m=15)(::DFTK.var"#anderson#826"{DFTK.var"#anderson#825#827"{Base.Pairs{Symbol, Int64, Nothing, @NamedTuple{m::Int64}}}}) (generic function with 1 method)All keyword arguments are passed through to
DFTK.AndersonAcceleration.Try increasing convergence for for the bands in each SCF step by increasing the
ratio_ρdiffparameter of theAdaptiveDiagtolalgorithm. For example:diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)Increase the number of bands, which are fully converged in each SCF step by tweaking the
AdaptiveBandsalgorithm. For example:nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)AdaptiveBands(4, 7, 1.0e-6, 0.01)Try the adaptive damping algorithm by using
DFTK.scf_potential_mixing_adaptiveinstead ofself_consistent_field:DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)(ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668725406 -11.100308396745886 … -8.289845772415676 -11.100308396745946; -11.100308396745886 -9.130057825950965 … -9.130057795899672 -11.10030835676291; … ; -8.289845772415676 -9.130057795899672 … -4.149589921646159 -6.287956198202435; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.11184822358101;;; -11.100308396745888 -9.130057825950963 … -9.130057795899674 -11.10030835676291; -9.130057825950965 -6.903159481984893 … -9.130057827300647 -10.053883826555678; … ; -9.130057795899672 -9.130057827300647 … -5.294353669217351 -7.54739920652481; -11.100308356762909 -10.053883826555678 … -7.547399206524811 -10.053883826555783;;; -8.289845772415974 -6.307621931519523 … -8.289845781014929 -9.11184819352968; -6.307621931519525 -4.516655665818289 … -7.547399237614641 -7.547399206525042; … ; -8.289845781014927 -7.547399237614641 … -5.768969083584203 -7.547399237614713; -9.11184819352968 -7.547399206525042 … -7.547399237614714 -9.111848224930917;;; … ;;; -5.301031718252607 -6.307621955791731 … -2.549703573278626 -3.849582179390585; -6.307621955791731 -6.903159495211721 … -3.3290606985489806 -4.878419358633455; … ; -2.5497035732786255 -3.329060698548981 … -1.2567984709046431 -1.8141947460434942; -3.8495821793905853 -4.878419358633457 … -1.8141947460434942 -2.7147673353252646;;; -8.289845772415678 -9.130057795899672 … -4.14958992164616 -6.287956198202434; -9.130057795899674 -9.130057827300645 … -5.29435366921735 -7.547399206524808; … ; -4.14958992164616 -5.294353669217351 … -1.9094492399177827 -2.8946123678549847; -6.287956198202435 -7.547399206524808 … -2.894612367854984 -4.4855427593749955;;; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.111848223581008; -11.100308356762909 -10.053883826555678 … -7.547399206524812 -10.053883826555783; … ; -6.287956198202434 -7.547399206524812 … -2.894612367854984 -4.4855427593749955; -9.11184822358101 -10.053883826555783 … -4.485542759374996 -6.871104500138599])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893 … 0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), [-12.247569668725406 -11.100308396745886 … -8.289845772415676 -11.100308396745946; -11.100308396745886 -9.130057825950965 … -9.130057795899672 -11.10030835676291; … ; -8.289845772415676 -9.130057795899672 … -4.149589921646159 -6.287956198202435; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.11184822358101;;; -11.100308396745888 -9.130057825950963 … -9.130057795899674 -11.10030835676291; -9.130057825950965 -6.903159481984893 … -9.130057827300647 -10.053883826555678; … ; -9.130057795899672 -9.130057827300647 … -5.294353669217351 -7.54739920652481; -11.100308356762909 -10.053883826555678 … -7.547399206524811 -10.053883826555783;;; -8.289845772415974 -6.307621931519523 … -8.289845781014929 -9.11184819352968; -6.307621931519525 -4.516655665818289 … -7.547399237614641 -7.547399206525042; … ; -8.289845781014927 -7.547399237614641 … -5.768969083584203 -7.547399237614713; -9.11184819352968 -7.547399206525042 … -7.547399237614714 -9.111848224930917;;; … ;;; -5.301031718252607 -6.307621955791731 … -2.549703573278626 -3.849582179390585; -6.307621955791731 -6.903159495211721 … -3.3290606985489806 -4.878419358633455; … ; -2.5497035732786255 -3.329060698548981 … -1.2567984709046431 -1.8141947460434942; -3.8495821793905853 -4.878419358633457 … -1.8141947460434942 -2.7147673353252646;;; -8.289845772415678 -9.130057795899672 … -4.14958992164616 -6.287956198202434; -9.130057795899674 -9.130057827300645 … -5.29435366921735 -7.547399206524808; … ; -4.14958992164616 -5.294353669217351 … -1.9094492399177827 -2.8946123678549847; -6.287956198202435 -7.547399206524808 … -2.894612367854984 -4.4855427593749955;;; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.111848223581008; -11.100308356762909 -10.053883826555678 … -7.547399206524812 -10.053883826555783; … ; -6.287956198202434 -7.547399206524812 … -2.894612367854984 -4.4855427593749955; -9.11184822358101 -10.053883826555783 … -4.485542759374996 -6.871104500138599]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0, 0, 0], spin = 1, num. G vectors = 749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.0004983381675914488 - 0.0023481029135721423im -0.02029648638251253 - 0.010256036451212713im … -0.002622926764248304 + 0.009519798657978149im 0.003632932421128172 + 0.005962754518024949im; -0.004678307177476937 - 0.0029129259633518673im -0.00311958588821654 + 0.004847769574749625im … -0.0010576195740914212 + 0.0045165078016980225im 0.003733220426827706 - 0.007627131493992789im; … ; -0.007404890846154162 + 0.003293696453923695im -0.010595842377710114 + 0.0030239213505149094im … -0.00048562203324994144 + 0.0008316277087719788im 0.002255930184191 + 0.007117952062840948im; -0.012492189836189941 + 0.009164193913689384im -0.008263554048170689 + 0.0020942732113647462im … -0.00030464905718249717 + 0.009865063308390355im 0.0001850955497847426 + 0.006804859680519577im;;; -0.003222811377220967 - 0.026662307598847315im -0.01055772632869184 + 0.018861791233617343im … 0.10735998106933177 + 0.009162460726839565im 0.10701964464118374 - 0.08907411035182701im; 0.017969395389447744 + 0.034653050699024im 0.02322929892728064 + 0.005633320640302813im … 0.07328042703262536 - 0.06407167437690764im 0.00021166866539896675 - 0.07296769978448057im; … ; 0.010188860741564101 + 2.8643113152100608e-5im -0.010660991031073607 + 0.010623831883644083im … 0.011857356020927204 - 0.005565591277978708im 0.027008040848054374 + 0.015715533040313763im; 0.03168980693739235 - 0.02247322579217949im -0.010849242723374704 + 0.012070769380048217im … 0.03343447558758554 + 0.025809275305618978im 0.09850372014123554 + 0.0043457954368074266im;;; 0.03764371765744453 + 0.043609897291791606im 0.03922085885356277 + 0.01119775831266311im … 0.0853392419375386 - 0.065619295839553im 0.011744677680927821 - 0.06604836208332049im; 0.1581130502489224 + 0.02050179705033218im 0.03961680309614526 - 0.02574829364126029im … 0.008097638205188116 - 0.04630414137558405im 0.025053789642525286 + 0.03303923730449202im; … ; 0.00915318680686938 - 0.0024094935423039712im 0.0022533782573087445 + 0.015005258071439969im … 0.029267564142762447 + 0.02176542219746439im 0.048631487910132484 + 0.0015281027493234053im; 0.008245567807604517 - 0.003766179851841897im 0.012479668123636751 + 0.011848508227652065im … 0.09635058635242402 + 0.005409209714402118im 0.0716524771711933 - 0.05327301118496034im;;; … ;;; 0.011711549507576371 - 0.021954328467174336im -0.006903742177392396 - 0.02024699669336741im … -0.06261271792963762 + 0.001734369827399467im 0.003129825769394634 + 0.013793474721359797im; 0.009706884232511426 - 0.008169408270612473im 0.02859405530689858 - 0.0009534108379221883im … -0.007489218208986188 + 0.014501878780844545im 0.010558233646076783 - 0.0049538709923175606im; … ; 0.0032379450228305633 + 0.006316720111263497im 0.03225372922138267 - 0.024299326552598113im … 0.0032597176575887635 + 0.001980639048752511im -0.02849357601688383 - 0.026275207532233315im; 0.026635687998969485 - 0.014139398475068957im 0.008067733043577904 - 0.0474279617531644im … -0.03661669729039553 - 0.04238081437636965im -0.03354822550263792 + 0.006105526554878988im;;; -0.013332883954153711 - 0.01813167622632523im 0.015372021263533847 + 0.0007525135913132551im … -0.0855622224388748 + 0.08152134424422583im 0.008917816542891562 - 0.012939400704793387im; 0.00902668096751566 - 0.0005007784882186707im 0.03293137622231424 - 0.025811250287375267im … -0.00024158878977714217 + 0.02242141029670159im -0.014844688215269856 - 0.023590829602936306im; … ; 0.008711383126158241 - 0.005670886414594636im 0.0025053317550015586 - 0.043904641659102725im … -0.03591578584673648 - 0.036161675430842054im -0.05770980963827679 + 0.005761803437941741im; 2.7031821289162823e-5 - 0.04797277635964539im -0.03321269360081104 - 0.034012226307992395im … -0.15606457648364405 - 0.0040049011692740695im -0.03353618369423771 + 0.0401953519296307im;;; -0.022114701373613828 + 0.005093775441851004im 0.02715447366130072 - 0.02806795868416786im … -0.013935314207857416 + 0.07214148589980687im -0.029898963687673474 - 0.02145406062071277im; 0.01390484956253881 - 0.008782288133468865im 0.005709541435420216 - 0.03547761090571299im … -0.012669643190816402 - 0.002436568816296482im -0.05046340730684434 + 0.0008576723861005997im; … ; -0.009808682794022154 - 0.018162627580609297im -0.021212333958766084 - 0.01323124924057842im … -0.08283124251096087 - 0.010562630878497754im -0.035124856326485876 + 0.03193140335047465im; -0.040654237039722395 - 0.015110277396443082im -0.016432632201863397 + 0.005541155704555024im … -0.10555985521367041 + 0.08817828574058488im -0.009871405573071812 + 0.022599120667115415im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668725406 -11.100308396745886 … -8.289845772415676 -11.100308396745946; -11.100308396745886 -9.130057825950965 … -9.130057795899672 -11.10030835676291; … ; -8.289845772415676 -9.130057795899672 … -4.149589921646159 -6.287956198202435; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.11184822358101;;; -11.100308396745888 -9.130057825950963 … -9.130057795899674 -11.10030835676291; -9.130057825950965 -6.903159481984893 … -9.130057827300647 -10.053883826555678; … ; -9.130057795899672 -9.130057827300647 … -5.294353669217351 -7.54739920652481; -11.100308356762909 -10.053883826555678 … -7.547399206524811 -10.053883826555783;;; -8.289845772415974 -6.307621931519523 … -8.289845781014929 -9.11184819352968; -6.307621931519525 -4.516655665818289 … -7.547399237614641 -7.547399206525042; … ; -8.289845781014927 -7.547399237614641 … -5.768969083584203 -7.547399237614713; -9.11184819352968 -7.547399206525042 … -7.547399237614714 -9.111848224930917;;; … ;;; -5.301031718252607 -6.307621955791731 … -2.549703573278626 -3.849582179390585; -6.307621955791731 -6.903159495211721 … -3.3290606985489806 -4.878419358633455; … ; -2.5497035732786255 -3.329060698548981 … -1.2567984709046431 -1.8141947460434942; -3.8495821793905853 -4.878419358633457 … -1.8141947460434942 -2.7147673353252646;;; -8.289845772415678 -9.130057795899672 … -4.14958992164616 -6.287956198202434; -9.130057795899674 -9.130057827300645 … -5.29435366921735 -7.547399206524808; … ; -4.14958992164616 -5.294353669217351 … -1.9094492399177827 -2.8946123678549847; -6.287956198202435 -7.547399206524808 … -2.894612367854984 -4.4855427593749955;;; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.111848223581008; -11.100308356762909 -10.053883826555678 … -7.547399206524812 -10.053883826555783; … ; -6.287956198202434 -7.547399206524812 … -2.894612367854984 -4.4855427593749955; -9.11184822358101 -10.053883826555783 … -4.485542759374996 -6.871104500138599])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704 … 2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), [-12.247569668725406 -11.100308396745886 … -8.289845772415676 -11.100308396745946; -11.100308396745886 -9.130057825950965 … -9.130057795899672 -11.10030835676291; … ; -8.289845772415676 -9.130057795899672 … -4.149589921646159 -6.287956198202435; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.11184822358101;;; -11.100308396745888 -9.130057825950963 … -9.130057795899674 -11.10030835676291; -9.130057825950965 -6.903159481984893 … -9.130057827300647 -10.053883826555678; … ; -9.130057795899672 -9.130057827300647 … -5.294353669217351 -7.54739920652481; -11.100308356762909 -10.053883826555678 … -7.547399206524811 -10.053883826555783;;; -8.289845772415974 -6.307621931519523 … -8.289845781014929 -9.11184819352968; -6.307621931519525 -4.516655665818289 … -7.547399237614641 -7.547399206525042; … ; -8.289845781014927 -7.547399237614641 … -5.768969083584203 -7.547399237614713; -9.11184819352968 -7.547399206525042 … -7.547399237614714 -9.111848224930917;;; … ;;; -5.301031718252607 -6.307621955791731 … -2.549703573278626 -3.849582179390585; -6.307621955791731 -6.903159495211721 … -3.3290606985489806 -4.878419358633455; … ; -2.5497035732786255 -3.329060698548981 … -1.2567984709046431 -1.8141947460434942; -3.8495821793905853 -4.878419358633457 … -1.8141947460434942 -2.7147673353252646;;; -8.289845772415678 -9.130057795899672 … -4.14958992164616 -6.287956198202434; -9.130057795899674 -9.130057827300645 … -5.29435366921735 -7.547399206524808; … ; -4.14958992164616 -5.294353669217351 … -1.9094492399177827 -2.8946123678549847; -6.287956198202435 -7.547399206524808 … -2.894612367854984 -4.4855427593749955;;; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.111848223581008; -11.100308356762909 -10.053883826555678 … -7.547399206524812 -10.053883826555783; … ; -6.287956198202434 -7.547399206524812 … -2.894612367854984 -4.4855427593749955; -9.11184822358101 -10.053883826555783 … -4.485542759374996 -6.871104500138599]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0, 0], spin = 1, num. G vectors = 757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.0004983381675914488 - 0.0023481029135721423im -0.02029648638251253 - 0.010256036451212713im … -0.002622926764248304 + 0.009519798657978149im 0.003632932421128172 + 0.005962754518024949im; -0.004678307177476937 - 0.0029129259633518673im -0.00311958588821654 + 0.004847769574749625im … -0.0010576195740914212 + 0.0045165078016980225im 0.003733220426827706 - 0.007627131493992789im; … ; -0.007404890846154162 + 0.003293696453923695im -0.010595842377710114 + 0.0030239213505149094im … -0.00048562203324994144 + 0.0008316277087719788im 0.002255930184191 + 0.007117952062840948im; -0.012492189836189941 + 0.009164193913689384im -0.008263554048170689 + 0.0020942732113647462im … -0.00030464905718249717 + 0.009865063308390355im 0.0001850955497847426 + 0.006804859680519577im;;; -0.003222811377220967 - 0.026662307598847315im -0.01055772632869184 + 0.018861791233617343im … 0.10735998106933177 + 0.009162460726839565im 0.10701964464118374 - 0.08907411035182701im; 0.017969395389447744 + 0.034653050699024im 0.02322929892728064 + 0.005633320640302813im … 0.07328042703262536 - 0.06407167437690764im 0.00021166866539896675 - 0.07296769978448057im; … ; 0.010188860741564101 + 2.8643113152100608e-5im -0.010660991031073607 + 0.010623831883644083im … 0.011857356020927204 - 0.005565591277978708im 0.027008040848054374 + 0.015715533040313763im; 0.03168980693739235 - 0.02247322579217949im -0.010849242723374704 + 0.012070769380048217im … 0.03343447558758554 + 0.025809275305618978im 0.09850372014123554 + 0.0043457954368074266im;;; 0.03764371765744453 + 0.043609897291791606im 0.03922085885356277 + 0.01119775831266311im … 0.0853392419375386 - 0.065619295839553im 0.011744677680927821 - 0.06604836208332049im; 0.1581130502489224 + 0.02050179705033218im 0.03961680309614526 - 0.02574829364126029im … 0.008097638205188116 - 0.04630414137558405im 0.025053789642525286 + 0.03303923730449202im; … ; 0.00915318680686938 - 0.0024094935423039712im 0.0022533782573087445 + 0.015005258071439969im … 0.029267564142762447 + 0.02176542219746439im 0.048631487910132484 + 0.0015281027493234053im; 0.008245567807604517 - 0.003766179851841897im 0.012479668123636751 + 0.011848508227652065im … 0.09635058635242402 + 0.005409209714402118im 0.0716524771711933 - 0.05327301118496034im;;; … ;;; 0.011711549507576371 - 0.021954328467174336im -0.006903742177392396 - 0.02024699669336741im … -0.06261271792963762 + 0.001734369827399467im 0.003129825769394634 + 0.013793474721359797im; 0.009706884232511426 - 0.008169408270612473im 0.02859405530689858 - 0.0009534108379221883im … -0.007489218208986188 + 0.014501878780844545im 0.010558233646076783 - 0.0049538709923175606im; … ; 0.0032379450228305633 + 0.006316720111263497im 0.03225372922138267 - 0.024299326552598113im … 0.0032597176575887635 + 0.001980639048752511im -0.02849357601688383 - 0.026275207532233315im; 0.026635687998969485 - 0.014139398475068957im 0.008067733043577904 - 0.0474279617531644im … -0.03661669729039553 - 0.04238081437636965im -0.03354822550263792 + 0.006105526554878988im;;; -0.013332883954153711 - 0.01813167622632523im 0.015372021263533847 + 0.0007525135913132551im … -0.0855622224388748 + 0.08152134424422583im 0.008917816542891562 - 0.012939400704793387im; 0.00902668096751566 - 0.0005007784882186707im 0.03293137622231424 - 0.025811250287375267im … -0.00024158878977714217 + 0.02242141029670159im -0.014844688215269856 - 0.023590829602936306im; … ; 0.008711383126158241 - 0.005670886414594636im 0.0025053317550015586 - 0.043904641659102725im … -0.03591578584673648 - 0.036161675430842054im -0.05770980963827679 + 0.005761803437941741im; 2.7031821289162823e-5 - 0.04797277635964539im -0.03321269360081104 - 0.034012226307992395im … -0.15606457648364405 - 0.0040049011692740695im -0.03353618369423771 + 0.0401953519296307im;;; -0.022114701373613828 + 0.005093775441851004im 0.02715447366130072 - 0.02806795868416786im … -0.013935314207857416 + 0.07214148589980687im -0.029898963687673474 - 0.02145406062071277im; 0.01390484956253881 - 0.008782288133468865im 0.005709541435420216 - 0.03547761090571299im … -0.012669643190816402 - 0.002436568816296482im -0.05046340730684434 + 0.0008576723861005997im; … ; -0.009808682794022154 - 0.018162627580609297im -0.021212333958766084 - 0.01323124924057842im … -0.08283124251096087 - 0.010562630878497754im -0.035124856326485876 + 0.03193140335047465im; -0.040654237039722395 - 0.015110277396443082im -0.016432632201863397 + 0.005541155704555024im … -0.10555985521367041 + 0.08817828574058488im -0.009871405573071812 + 0.022599120667115415im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668725406 -11.100308396745886 … -8.289845772415676 -11.100308396745946; -11.100308396745886 -9.130057825950965 … -9.130057795899672 -11.10030835676291; … ; -8.289845772415676 -9.130057795899672 … -4.149589921646159 -6.287956198202435; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.11184822358101;;; -11.100308396745888 -9.130057825950963 … -9.130057795899674 -11.10030835676291; -9.130057825950965 -6.903159481984893 … -9.130057827300647 -10.053883826555678; … ; -9.130057795899672 -9.130057827300647 … -5.294353669217351 -7.54739920652481; -11.100308356762909 -10.053883826555678 … -7.547399206524811 -10.053883826555783;;; -8.289845772415974 -6.307621931519523 … -8.289845781014929 -9.11184819352968; -6.307621931519525 -4.516655665818289 … -7.547399237614641 -7.547399206525042; … ; -8.289845781014927 -7.547399237614641 … -5.768969083584203 -7.547399237614713; -9.11184819352968 -7.547399206525042 … -7.547399237614714 -9.111848224930917;;; … ;;; -5.301031718252607 -6.307621955791731 … -2.549703573278626 -3.849582179390585; -6.307621955791731 -6.903159495211721 … -3.3290606985489806 -4.878419358633455; … ; -2.5497035732786255 -3.329060698548981 … -1.2567984709046431 -1.8141947460434942; -3.8495821793905853 -4.878419358633457 … -1.8141947460434942 -2.7147673353252646;;; -8.289845772415678 -9.130057795899672 … -4.14958992164616 -6.287956198202434; -9.130057795899674 -9.130057827300645 … -5.29435366921735 -7.547399206524808; … ; -4.14958992164616 -5.294353669217351 … -1.9094492399177827 -2.8946123678549847; -6.287956198202435 -7.547399206524808 … -2.894612367854984 -4.4855427593749955;;; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.111848223581008; -11.100308356762909 -10.053883826555678 … -7.547399206524812 -10.053883826555783; … ; -6.287956198202434 -7.547399206524812 … -2.894612367854984 -4.4855427593749955; -9.11184822358101 -10.053883826555783 … -4.485542759374996 -6.871104500138599])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052 … 0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), [-12.247569668725406 -11.100308396745886 … -8.289845772415676 -11.100308396745946; -11.100308396745886 -9.130057825950965 … -9.130057795899672 -11.10030835676291; … ; -8.289845772415676 -9.130057795899672 … -4.149589921646159 -6.287956198202435; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.11184822358101;;; -11.100308396745888 -9.130057825950963 … -9.130057795899674 -11.10030835676291; -9.130057825950965 -6.903159481984893 … -9.130057827300647 -10.053883826555678; … ; -9.130057795899672 -9.130057827300647 … -5.294353669217351 -7.54739920652481; -11.100308356762909 -10.053883826555678 … -7.547399206524811 -10.053883826555783;;; -8.289845772415974 -6.307621931519523 … -8.289845781014929 -9.11184819352968; -6.307621931519525 -4.516655665818289 … -7.547399237614641 -7.547399206525042; … ; -8.289845781014927 -7.547399237614641 … -5.768969083584203 -7.547399237614713; -9.11184819352968 -7.547399206525042 … -7.547399237614714 -9.111848224930917;;; … ;;; -5.301031718252607 -6.307621955791731 … -2.549703573278626 -3.849582179390585; -6.307621955791731 -6.903159495211721 … -3.3290606985489806 -4.878419358633455; … ; -2.5497035732786255 -3.329060698548981 … -1.2567984709046431 -1.8141947460434942; -3.8495821793905853 -4.878419358633457 … -1.8141947460434942 -2.7147673353252646;;; -8.289845772415678 -9.130057795899672 … -4.14958992164616 -6.287956198202434; -9.130057795899674 -9.130057827300645 … -5.29435366921735 -7.547399206524808; … ; -4.14958992164616 -5.294353669217351 … -1.9094492399177827 -2.8946123678549847; -6.287956198202435 -7.547399206524808 … -2.894612367854984 -4.4855427593749955;;; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.111848223581008; -11.100308356762909 -10.053883826555678 … -7.547399206524812 -10.053883826555783; … ; -6.287956198202434 -7.547399206524812 … -2.894612367854984 -4.4855427593749955; -9.11184822358101 -10.053883826555783 … -4.485542759374996 -6.871104500138599]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333, 0.333, 0], spin = 1, num. G vectors = 749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.0004983381675914488 - 0.0023481029135721423im -0.02029648638251253 - 0.010256036451212713im … -0.002622926764248304 + 0.009519798657978149im 0.003632932421128172 + 0.005962754518024949im; -0.004678307177476937 - 0.0029129259633518673im -0.00311958588821654 + 0.004847769574749625im … -0.0010576195740914212 + 0.0045165078016980225im 0.003733220426827706 - 0.007627131493992789im; … ; -0.007404890846154162 + 0.003293696453923695im -0.010595842377710114 + 0.0030239213505149094im … -0.00048562203324994144 + 0.0008316277087719788im 0.002255930184191 + 0.007117952062840948im; -0.012492189836189941 + 0.009164193913689384im -0.008263554048170689 + 0.0020942732113647462im … -0.00030464905718249717 + 0.009865063308390355im 0.0001850955497847426 + 0.006804859680519577im;;; -0.003222811377220967 - 0.026662307598847315im -0.01055772632869184 + 0.018861791233617343im … 0.10735998106933177 + 0.009162460726839565im 0.10701964464118374 - 0.08907411035182701im; 0.017969395389447744 + 0.034653050699024im 0.02322929892728064 + 0.005633320640302813im … 0.07328042703262536 - 0.06407167437690764im 0.00021166866539896675 - 0.07296769978448057im; … ; 0.010188860741564101 + 2.8643113152100608e-5im -0.010660991031073607 + 0.010623831883644083im … 0.011857356020927204 - 0.005565591277978708im 0.027008040848054374 + 0.015715533040313763im; 0.03168980693739235 - 0.02247322579217949im -0.010849242723374704 + 0.012070769380048217im … 0.03343447558758554 + 0.025809275305618978im 0.09850372014123554 + 0.0043457954368074266im;;; 0.03764371765744453 + 0.043609897291791606im 0.03922085885356277 + 0.01119775831266311im … 0.0853392419375386 - 0.065619295839553im 0.011744677680927821 - 0.06604836208332049im; 0.1581130502489224 + 0.02050179705033218im 0.03961680309614526 - 0.02574829364126029im … 0.008097638205188116 - 0.04630414137558405im 0.025053789642525286 + 0.03303923730449202im; … ; 0.00915318680686938 - 0.0024094935423039712im 0.0022533782573087445 + 0.015005258071439969im … 0.029267564142762447 + 0.02176542219746439im 0.048631487910132484 + 0.0015281027493234053im; 0.008245567807604517 - 0.003766179851841897im 0.012479668123636751 + 0.011848508227652065im … 0.09635058635242402 + 0.005409209714402118im 0.0716524771711933 - 0.05327301118496034im;;; … ;;; 0.011711549507576371 - 0.021954328467174336im -0.006903742177392396 - 0.02024699669336741im … -0.06261271792963762 + 0.001734369827399467im 0.003129825769394634 + 0.013793474721359797im; 0.009706884232511426 - 0.008169408270612473im 0.02859405530689858 - 0.0009534108379221883im … -0.007489218208986188 + 0.014501878780844545im 0.010558233646076783 - 0.0049538709923175606im; … ; 0.0032379450228305633 + 0.006316720111263497im 0.03225372922138267 - 0.024299326552598113im … 0.0032597176575887635 + 0.001980639048752511im -0.02849357601688383 - 0.026275207532233315im; 0.026635687998969485 - 0.014139398475068957im 0.008067733043577904 - 0.0474279617531644im … -0.03661669729039553 - 0.04238081437636965im -0.03354822550263792 + 0.006105526554878988im;;; -0.013332883954153711 - 0.01813167622632523im 0.015372021263533847 + 0.0007525135913132551im … -0.0855622224388748 + 0.08152134424422583im 0.008917816542891562 - 0.012939400704793387im; 0.00902668096751566 - 0.0005007784882186707im 0.03293137622231424 - 0.025811250287375267im … -0.00024158878977714217 + 0.02242141029670159im -0.014844688215269856 - 0.023590829602936306im; … ; 0.008711383126158241 - 0.005670886414594636im 0.0025053317550015586 - 0.043904641659102725im … -0.03591578584673648 - 0.036161675430842054im -0.05770980963827679 + 0.005761803437941741im; 2.7031821289162823e-5 - 0.04797277635964539im -0.03321269360081104 - 0.034012226307992395im … -0.15606457648364405 - 0.0040049011692740695im -0.03353618369423771 + 0.0401953519296307im;;; -0.022114701373613828 + 0.005093775441851004im 0.02715447366130072 - 0.02806795868416786im … -0.013935314207857416 + 0.07214148589980687im -0.029898963687673474 - 0.02145406062071277im; 0.01390484956253881 - 0.008782288133468865im 0.005709541435420216 - 0.03547761090571299im … -0.012669643190816402 - 0.002436568816296482im -0.05046340730684434 + 0.0008576723861005997im; … ; -0.009808682794022154 - 0.018162627580609297im -0.021212333958766084 - 0.01323124924057842im … -0.08283124251096087 - 0.010562630878497754im -0.035124856326485876 + 0.03193140335047465im; -0.040654237039722395 - 0.015110277396443082im -0.016432632201863397 + 0.005541155704555024im … -0.10555985521367041 + 0.08817828574058488im -0.009871405573071812 + 0.022599120667115415im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668725406 -11.100308396745886 … -8.289845772415676 -11.100308396745946; -11.100308396745886 -9.130057825950965 … -9.130057795899672 -11.10030835676291; … ; -8.289845772415676 -9.130057795899672 … -4.149589921646159 -6.287956198202435; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.11184822358101;;; -11.100308396745888 -9.130057825950963 … -9.130057795899674 -11.10030835676291; -9.130057825950965 -6.903159481984893 … -9.130057827300647 -10.053883826555678; … ; -9.130057795899672 -9.130057827300647 … -5.294353669217351 -7.54739920652481; -11.100308356762909 -10.053883826555678 … -7.547399206524811 -10.053883826555783;;; -8.289845772415974 -6.307621931519523 … -8.289845781014929 -9.11184819352968; -6.307621931519525 -4.516655665818289 … -7.547399237614641 -7.547399206525042; … ; -8.289845781014927 -7.547399237614641 … -5.768969083584203 -7.547399237614713; -9.11184819352968 -7.547399206525042 … -7.547399237614714 -9.111848224930917;;; … ;;; -5.301031718252607 -6.307621955791731 … -2.549703573278626 -3.849582179390585; -6.307621955791731 -6.903159495211721 … -3.3290606985489806 -4.878419358633455; … ; -2.5497035732786255 -3.329060698548981 … -1.2567984709046431 -1.8141947460434942; -3.8495821793905853 -4.878419358633457 … -1.8141947460434942 -2.7147673353252646;;; -8.289845772415678 -9.130057795899672 … -4.14958992164616 -6.287956198202434; -9.130057795899674 -9.130057827300645 … -5.29435366921735 -7.547399206524808; … ; -4.14958992164616 -5.294353669217351 … -1.9094492399177827 -2.8946123678549847; -6.287956198202435 -7.547399206524808 … -2.894612367854984 -4.4855427593749955;;; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.111848223581008; -11.100308356762909 -10.053883826555678 … -7.547399206524812 -10.053883826555783; … ; -6.287956198202434 -7.547399206524812 … -2.894612367854984 -4.4855427593749955; -9.11184822358101 -10.053883826555783 … -4.485542759374996 -6.871104500138599])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951 … 0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), [-12.247569668725406 -11.100308396745886 … -8.289845772415676 -11.100308396745946; -11.100308396745886 -9.130057825950965 … -9.130057795899672 -11.10030835676291; … ; -8.289845772415676 -9.130057795899672 … -4.149589921646159 -6.287956198202435; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.11184822358101;;; -11.100308396745888 -9.130057825950963 … -9.130057795899674 -11.10030835676291; -9.130057825950965 -6.903159481984893 … -9.130057827300647 -10.053883826555678; … ; -9.130057795899672 -9.130057827300647 … -5.294353669217351 -7.54739920652481; -11.100308356762909 -10.053883826555678 … -7.547399206524811 -10.053883826555783;;; -8.289845772415974 -6.307621931519523 … -8.289845781014929 -9.11184819352968; -6.307621931519525 -4.516655665818289 … -7.547399237614641 -7.547399206525042; … ; -8.289845781014927 -7.547399237614641 … -5.768969083584203 -7.547399237614713; -9.11184819352968 -7.547399206525042 … -7.547399237614714 -9.111848224930917;;; … ;;; -5.301031718252607 -6.307621955791731 … -2.549703573278626 -3.849582179390585; -6.307621955791731 -6.903159495211721 … -3.3290606985489806 -4.878419358633455; … ; -2.5497035732786255 -3.329060698548981 … -1.2567984709046431 -1.8141947460434942; -3.8495821793905853 -4.878419358633457 … -1.8141947460434942 -2.7147673353252646;;; -8.289845772415678 -9.130057795899672 … -4.14958992164616 -6.287956198202434; -9.130057795899674 -9.130057827300645 … -5.29435366921735 -7.547399206524808; … ; -4.14958992164616 -5.294353669217351 … -1.9094492399177827 -2.8946123678549847; -6.287956198202435 -7.547399206524808 … -2.894612367854984 -4.4855427593749955;;; -11.100308396745946 -11.10030835676291 … -6.287956198202436 -9.111848223581008; -11.100308356762909 -10.053883826555678 … -7.547399206524812 -10.053883826555783; … ; -6.287956198202434 -7.547399206524812 … -2.894612367854984 -4.4855427593749955; -9.11184822358101 -10.053883826555783 … -4.485542759374996 -6.871104500138599]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333, 0.333, 0], spin = 1, num. G vectors = 740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.0004983381675914488 - 0.0023481029135721423im -0.02029648638251253 - 0.010256036451212713im … -0.002622926764248304 + 0.009519798657978149im 0.003632932421128172 + 0.005962754518024949im; -0.004678307177476937 - 0.0029129259633518673im -0.00311958588821654 + 0.004847769574749625im … -0.0010576195740914212 + 0.0045165078016980225im 0.003733220426827706 - 0.007627131493992789im; … ; -0.007404890846154162 + 0.003293696453923695im -0.010595842377710114 + 0.0030239213505149094im … -0.00048562203324994144 + 0.0008316277087719788im 0.002255930184191 + 0.007117952062840948im; -0.012492189836189941 + 0.009164193913689384im -0.008263554048170689 + 0.0020942732113647462im … -0.00030464905718249717 + 0.009865063308390355im 0.0001850955497847426 + 0.006804859680519577im;;; -0.003222811377220967 - 0.026662307598847315im -0.01055772632869184 + 0.018861791233617343im … 0.10735998106933177 + 0.009162460726839565im 0.10701964464118374 - 0.08907411035182701im; 0.017969395389447744 + 0.034653050699024im 0.02322929892728064 + 0.005633320640302813im … 0.07328042703262536 - 0.06407167437690764im 0.00021166866539896675 - 0.07296769978448057im; … ; 0.010188860741564101 + 2.8643113152100608e-5im -0.010660991031073607 + 0.010623831883644083im … 0.011857356020927204 - 0.005565591277978708im 0.027008040848054374 + 0.015715533040313763im; 0.03168980693739235 - 0.02247322579217949im -0.010849242723374704 + 0.012070769380048217im … 0.03343447558758554 + 0.025809275305618978im 0.09850372014123554 + 0.0043457954368074266im;;; 0.03764371765744453 + 0.043609897291791606im 0.03922085885356277 + 0.01119775831266311im … 0.0853392419375386 - 0.065619295839553im 0.011744677680927821 - 0.06604836208332049im; 0.1581130502489224 + 0.02050179705033218im 0.03961680309614526 - 0.02574829364126029im … 0.008097638205188116 - 0.04630414137558405im 0.025053789642525286 + 0.03303923730449202im; … ; 0.00915318680686938 - 0.0024094935423039712im 0.0022533782573087445 + 0.015005258071439969im … 0.029267564142762447 + 0.02176542219746439im 0.048631487910132484 + 0.0015281027493234053im; 0.008245567807604517 - 0.003766179851841897im 0.012479668123636751 + 0.011848508227652065im … 0.09635058635242402 + 0.005409209714402118im 0.0716524771711933 - 0.05327301118496034im;;; … ;;; 0.011711549507576371 - 0.021954328467174336im -0.006903742177392396 - 0.02024699669336741im … -0.06261271792963762 + 0.001734369827399467im 0.003129825769394634 + 0.013793474721359797im; 0.009706884232511426 - 0.008169408270612473im 0.02859405530689858 - 0.0009534108379221883im … -0.007489218208986188 + 0.014501878780844545im 0.010558233646076783 - 0.0049538709923175606im; … ; 0.0032379450228305633 + 0.006316720111263497im 0.03225372922138267 - 0.024299326552598113im … 0.0032597176575887635 + 0.001980639048752511im -0.02849357601688383 - 0.026275207532233315im; 0.026635687998969485 - 0.014139398475068957im 0.008067733043577904 - 0.0474279617531644im … -0.03661669729039553 - 0.04238081437636965im -0.03354822550263792 + 0.006105526554878988im;;; -0.013332883954153711 - 0.01813167622632523im 0.015372021263533847 + 0.0007525135913132551im … -0.0855622224388748 + 0.08152134424422583im 0.008917816542891562 - 0.012939400704793387im; 0.00902668096751566 - 0.0005007784882186707im 0.03293137622231424 - 0.025811250287375267im … -0.00024158878977714217 + 0.02242141029670159im -0.014844688215269856 - 0.023590829602936306im; … ; 0.008711383126158241 - 0.005670886414594636im 0.0025053317550015586 - 0.043904641659102725im … -0.03591578584673648 - 0.036161675430842054im -0.05770980963827679 + 0.005761803437941741im; 2.7031821289162823e-5 - 0.04797277635964539im -0.03321269360081104 - 0.034012226307992395im … -0.15606457648364405 - 0.0040049011692740695im -0.03353618369423771 + 0.0401953519296307im;;; -0.022114701373613828 + 0.005093775441851004im 0.02715447366130072 - 0.02806795868416786im … -0.013935314207857416 + 0.07214148589980687im -0.029898963687673474 - 0.02145406062071277im; 0.01390484956253881 - 0.008782288133468865im 0.005709541435420216 - 0.03547761090571299im … -0.012669643190816402 - 0.002436568816296482im -0.05046340730684434 + 0.0008576723861005997im; … ; -0.009808682794022154 - 0.018162627580609297im -0.021212333958766084 - 0.01323124924057842im … -0.08283124251096087 - 0.010562630878497754im -0.035124856326485876 + 0.03193140335047465im; -0.040654237039722395 - 0.015110277396443082im -0.016432632201863397 + 0.005541155704555024im … -0.10555985521367041 + 0.08817828574058488im -0.009871405573071812 + 0.022599120667115415im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488506), converged = true, ρ = [7.589784541818303e-5 0.001126271272832974 … 0.0066970375500394795 0.0011262712728329859; 0.0011262712728329824 0.005274334457327437 … 0.005274334457327465 0.0011262712728329959; … ; 0.006697037550039484 0.005274334457327474 … 0.023244754190926708 0.012258986825179905; 0.0011262712728329943 0.0011262712728329792 … 0.012258986825179898 0.0037700086298972767;;; 0.0011262712728329753 0.005274334457327435 … 0.005274334457327471 0.0011262712728329896; 0.005274334457327442 0.01462006530453298 … 0.005274334457327459 0.0025880808748464934; … ; 0.005274334457327474 0.00527433445732747 … 0.01810768664601809 0.008922003044689243; 0.0011262712728329878 0.0025880808748464774 … 0.008922003044689241 0.0025880808748464964;;; 0.0066970375500394405 0.01641210910141201 … 0.006697037550039471 0.0037700086298972624; 0.016412109101412015 0.03127783931549983 … 0.008922003044689214 0.008922003044689203; … ; 0.006697037550039476 0.00892200304468922 … 0.016476756359325533 0.00892200304468924; 0.0037700086298972676 0.008922003044689193 … 0.008922003044689236 0.0037700086298972694;;; … ;;; 0.019853839853214317 0.01641210910141202 … 0.037156673635483695 0.027190800686389505; 0.016412109101412026 0.01462006530453298 … 0.03230127212621879 0.022322100931513503; … ; 0.0371566736354837 0.0323012721262188 … 0.04629698070140066 0.04263658273131698; 0.027190800686389516 0.022322100931513496 … 0.04263658273131698 0.034772229141829286;;; 0.0066970375500394475 0.005274334457327437 … 0.023244754190926684 0.012258986825179874; 0.005274334457327443 0.005274334457327438 … 0.018107686646018046 0.00892200304468921; … ; 0.02324475419092669 0.01810768664601806 … 0.04037111033547932 0.03149160381126431; 0.012258986825179879 0.0089220030446892 … 0.03149160381126431 0.02004716343264734;;; 0.0011262712728329761 0.001126271272832974 … 0.012258986825179891 0.0037700086298972707; 0.0011262712728329807 0.002588080874846475 … 0.008922003044689217 0.0025880808748464943; … ; 0.012258986825179894 0.008922003044689231 … 0.031491603811264327 0.02004716343264736; 0.0037700086298972694 0.00258808087484648 … 0.02004716343264736 0.008952603496751692;;;;], eigenvalues = [[-0.17836835653715685, 0.2624919449947162, 0.2624919449947163, 0.2624919449947166, 0.354692148169409, 0.3546921481694094, 0.3546921481694293], [-0.12755037617679774, 0.0647532059490627, 0.22545166517707202, 0.2254516651770722, 0.32197764961334, 0.3892227690862962, 0.3892227690862963], [-0.10818729216266688, 0.07755003473747606, 0.1727832801170569, 0.1727832801170571, 0.2843518536204366, 0.33054764843334755, 0.5267232426422824], [-0.05777325374155589, 0.012724782208276683, 0.09766073750256421, 0.18417825333221233, 0.3152284179605088, 0.4720312185032584, 0.49791351759390867]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993075766, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.8765433926128949 - 0.36520592560371334im 1.3414889440299054e-14 - 3.188746808550901e-14im … 4.748797808713799e-12 - 1.0241433501710401e-11im -2.0465132914344534e-9 + 4.3906272317044925e-9im; -0.09187055140363237 + 0.037831190529610904im -0.2840097157440285 + 0.07529468595798666im … 0.025662970216498035 + 0.03163434498275272im 0.07237994838994422 - 0.01314139024467222im; … ; 0.010853693162028952 + 0.0045221184606201795im 0.002896012265322007 - 0.03950919982627699im … 0.013531238486260097 - 0.04797393313382831im -0.05653786041488156 + 0.009418188091211937im; -0.09187055140368482 + 0.03783119052958751im 0.0480362963319814 - 0.3485979290005474im … -0.1786408745043429 - 0.3331960834282277im -0.20712009833022482 + 0.37809022928977953im], [0.6045515559695329 - 0.6951230198454635im -0.06819328078296526 - 0.1912360011409893im … -2.2186278900511625e-11 + 2.286702541470657e-11im 7.597231921164382e-12 + 3.802985978446992e-11im; -0.004348513319331745 - 0.062399921143749364im 0.008140197660238968 + 0.0038607517892528635im … 5.3107473458790835e-11 + 1.9130769856220534e-10im 2.7610736822848075e-10 + 1.6604098429791755e-10im; … ; -0.003243309125702233 + 0.0037292085537907202im 0.028394538050372196 + 0.07962746253966843im … 0.02293231966772371 - 0.07513697014190485im -0.008998389205380495 - 0.06968807360242923im; -0.008127673100380631 - 0.11662978202019547im -0.09046134715917442 - 0.04290421713066869im … -0.1632301581835919 - 0.30663677572172504im -0.24603179306918826 - 0.1897606190369913im], [0.833606023608247 + 0.40213512626279824im -3.6840747720947995e-15 + 1.34693381941181e-14im … 2.163511360298951e-12 + 8.709002748845982e-12im 2.6179494213520812e-9 + 1.3622144741938858e-9im; 0.0647030577348367 - 0.022591694372831993im 0.049970078760055506 - 0.015082342980895646im … 0.025959914832956836 - 0.00021098581688097im 0.002429762903027243 - 0.0026762983748598946im; … ; -0.009542557712774794 - 0.004603370827491506im -2.684044506791034e-14 + 3.703293128155597e-15im … 5.4933359461960705e-11 + 5.3593434811331474e-11im -0.02521000926577387 - 0.04797467880058922im; 0.1512845614980613 - 0.05282245841768178im -0.28073273647492325 + 0.08473285459156164im … 0.37208235416963914 - 0.003024051290091204im -0.14830807220926254 - 0.047288535164805384im], [-0.07598958464741755 + 0.7957040604779857im -2.9225907424900985e-15 - 5.934781692914565e-15im … -0.0036055021662203643 - 0.18160948988521472im 6.437033947651888e-7 + 3.3270168136065785e-6im; 0.2494884909744553 + 0.3021719576549663im -0.5543631580665112 - 0.2793540865115597im … 0.13121930564627443 + 0.12611081796775556im -1.0606529103933589e-6 - 8.975620797119492e-7im; … ; 0.0012597522980563568 - 0.013191150122005134im 7.952902367606217e-5 + 0.00024110011409120074im … 0.000258835521737464 + 0.01304480801017807im -0.034553698157741654 + 0.030514053895683256im; 0.04271587215465452 + 0.05173600858893571im 0.0047449162288488046 + 0.0023910530839705755im … 0.1033907446650418 + 0.09936387910081267im -0.029211214293905222 + 0.4703209676514984im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653715685, 0.2624919449947162, 0.2624919449947163, 0.2624919449947166, 0.354692148169409, 0.3546921481694094, 0.3546921481694293], [-0.12755037617679774, 0.0647532059490627, 0.22545166517707202, 0.2254516651770722, 0.32197764961334, 0.3892227690862962, 0.3892227690862963], [-0.10818729216266688, 0.07755003473747606, 0.1727832801170569, 0.1727832801170571, 0.2843518536204366, 0.33054764843334755, 0.5267232426422824], [-0.05777325374155589, 0.012724782208276683, 0.09766073750256421, 0.18417825333221233, 0.3152284179605088, 0.4720312185032584, 0.49791351759390867]], X = [[-0.8765433926128949 - 0.36520592560371334im 1.3414889440299054e-14 - 3.188746808550901e-14im … 4.748797808713799e-12 - 1.0241433501710401e-11im -2.0465132914344534e-9 + 4.3906272317044925e-9im; -0.09187055140363237 + 0.037831190529610904im -0.2840097157440285 + 0.07529468595798666im … 0.025662970216498035 + 0.03163434498275272im 0.07237994838994422 - 0.01314139024467222im; … ; 0.010853693162028952 + 0.0045221184606201795im 0.002896012265322007 - 0.03950919982627699im … 0.013531238486260097 - 0.04797393313382831im -0.05653786041488156 + 0.009418188091211937im; -0.09187055140368482 + 0.03783119052958751im 0.0480362963319814 - 0.3485979290005474im … -0.1786408745043429 - 0.3331960834282277im -0.20712009833022482 + 0.37809022928977953im], [0.6045515559695329 - 0.6951230198454635im -0.06819328078296526 - 0.1912360011409893im … -2.2186278900511625e-11 + 2.286702541470657e-11im 7.597231921164382e-12 + 3.802985978446992e-11im; -0.004348513319331745 - 0.062399921143749364im 0.008140197660238968 + 0.0038607517892528635im … 5.3107473458790835e-11 + 1.9130769856220534e-10im 2.7610736822848075e-10 + 1.6604098429791755e-10im; … ; -0.003243309125702233 + 0.0037292085537907202im 0.028394538050372196 + 0.07962746253966843im … 0.02293231966772371 - 0.07513697014190485im -0.008998389205380495 - 0.06968807360242923im; -0.008127673100380631 - 0.11662978202019547im -0.09046134715917442 - 0.04290421713066869im … -0.1632301581835919 - 0.30663677572172504im -0.24603179306918826 - 0.1897606190369913im], [0.833606023608247 + 0.40213512626279824im -3.6840747720947995e-15 + 1.34693381941181e-14im … 2.163511360298951e-12 + 8.709002748845982e-12im 2.6179494213520812e-9 + 1.3622144741938858e-9im; 0.0647030577348367 - 0.022591694372831993im 0.049970078760055506 - 0.015082342980895646im … 0.025959914832956836 - 0.00021098581688097im 0.002429762903027243 - 0.0026762983748598946im; … ; -0.009542557712774794 - 0.004603370827491506im -2.684044506791034e-14 + 3.703293128155597e-15im … 5.4933359461960705e-11 + 5.3593434811331474e-11im -0.02521000926577387 - 0.04797467880058922im; 0.1512845614980613 - 0.05282245841768178im -0.28073273647492325 + 0.08473285459156164im … 0.37208235416963914 - 0.003024051290091204im -0.14830807220926254 - 0.047288535164805384im], [-0.07598958464741755 + 0.7957040604779857im -2.9225907424900985e-15 - 5.934781692914565e-15im … -0.0036055021662203643 - 0.18160948988521472im 6.437033947651888e-7 + 3.3270168136065785e-6im; 0.2494884909744553 + 0.3021719576549663im -0.5543631580665112 - 0.2793540865115597im … 0.13121930564627443 + 0.12611081796775556im -1.0606529103933589e-6 - 8.975620797119492e-7im; … ; 0.0012597522980563568 - 0.013191150122005134im 7.952902367606217e-5 + 0.00024110011409120074im … 0.000258835521737464 + 0.01304480801017807im -0.034553698157741654 + 0.030514053895683256im; 0.04271587215465452 + 0.05173600858893571im 0.0047449162288488046 + 0.0023910530839705755im … 0.1033907446650418 + 0.09936387910081267im -0.029211214293905222 + 0.4703209676514984im]], residual_norms = [[5.484971996557603e-12, 1.2745819492610198e-11, 1.0169280930809378e-11, 9.817953084867276e-12, 3.089315626244507e-10, 3.942750085366084e-10, 1.6948986229282963e-7], [3.4496689662836574e-12, 5.876169050068743e-12, 4.907026511208627e-12, 5.674090090667607e-12, 6.565687333859129e-10, 3.3194167752015607e-9, 3.5944391845413617e-9], [4.075199891850306e-12, 5.59510026017292e-12, 6.268251104987139e-12, 6.302792678180215e-12, 3.40176159892792e-11, 9.666132529359643e-10, 1.1393512353784264e-6], [3.5297337707980694e-12, 4.53847700713501e-12, 6.920746165697658e-12, 1.4110962528129138e-11, 1.2104556443424232e-9, 1.6466950960893447e-5, 5.323877362025362e-6]], n_iter = [2, 2, 2, 2], converged = 1, n_matvec = 84)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21069632853420778, 0.027612485315976088, 0.0023094387180446186, 0.00025723252723600066, 9.566235342234681e-6, 9.107063161578618e-7, 2.95029789334125e-8, 1.808510448281316e-9, 4.850876368726087e-10, 7.572227501457735e-11], history_Etot = [-7.905262880981459, -7.910544387573136, -7.910593454787103, -7.910594393330326, -7.9105943964451075, -7.910594396488445, -7.910594396488507, -7.9105943964885075, -7.910594396488508, -7.910594396488506], occupation_threshold = 1.0e-6, seed = 0xd645d23ae1ea9f7d, runtime_ns = 0x000000008005e7fa)