Achieving DFT convergence

Some systems are tricky to converge. Here are some collected tips and tricks you can try and which may help. Take these as a source of inspiration for what you can try. Your mileage may vary.

  • Even if modelling an insulator, add a temperature to your Model. Values up to 1e-2 atomic units may be sometimes needed. Note, that this can change the physics of your system, so if in doubt perform a second SCF with a lower temperature afterwards, starting from the final density of the first.

  • Increase the history size of the Anderson acceleration by passing a custom solver to self_consistent_field, e.g.

    solver = scf_anderson_solver(; m=15)
    (::DFTK.var"#anderson#914"{DFTK.var"#anderson#913#915"{Int64, Base.Pairs{Symbol, Int64, Nothing, @NamedTuple{m::Int64}}}}) (generic function with 1 method)

    All keyword arguments are passed through to DFTK.AndersonAcceleration.

  • Try increasing convergence for for the bands in each SCF step by increasing the ratio_ρdiff parameter of the AdaptiveDiagtol algorithm. For example:

    diagtolalg = AdaptiveDiagtol(; ratio_ρdiff=0.05)
    AdaptiveDiagtol(0.05, nothing, 0.005, 0.03)
  • Increase the number of bands, which are fully converged in each SCF step by tweaking the AdaptiveBands algorithm. For example:

    nbandsalg = AdaptiveBands(model; temperature_factor_converge=1.1)
    AdaptiveBands(4, 7, 1.0e-6, 0.01)
  • Try the adaptive damping algorithm by using DFTK.scf_potential_mixing_adaptive instead of self_consistent_field:

    DFTK.scf_potential_mixing_adaptive(basis; tol=1e-10)
    (ham = Hamiltonian(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), HamiltonianBlock[DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668719164 -11.100308396743765 … -8.28984577241382 -11.100308396743825; -11.100308396743765 -9.130057825949084 … -9.130057795897791 -11.100308356760788; … ; -8.289845772413821 -9.130057795897791 … -4.149589921644165 -6.287956198200511; -11.100308396743824 -11.10030835676079 … -6.287956198200513 -9.111848223579221;;; -11.100308396743767 -9.130057825949082 … -9.130057795897793 -11.10030835676079; -9.130057825949084 -6.9031594819829545 … -9.130057827298765 -10.053883826553793; … ; -9.130057795897791 -9.130057827298765 … -5.294353669215358 -7.547399206522909; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898;;; -8.289845772414118 -6.307621931517568 … -8.289845781013073 -9.11184819352789; -6.30762193151757 -4.5166556658162715 … -7.547399237612741 -7.547399206523141; … ; -8.28984578101307 -7.54739923761274 … -5.768969083582212 -7.5473992376128125; -9.11184819352789 -7.547399206523141 … -7.547399237612813 -9.111848224929128;;; … ;;; -5.301031718250632 -6.307621955789777 … -2.5497035732767115 -3.8495821793885945; -6.307621955789776 -6.903159495209783 … -3.3290606985469875 -4.878419358631457; … ; -2.549703573276711 -3.329060698546988 … -1.2567984709031477 -1.8141947460417418; -3.8495821793885954 -4.878419358631459 … -1.8141947460417418 -2.7147673353233386;;; -8.289845772413821 -9.130057795897791 … -4.149589921644168 -6.2879561982005105; -9.130057795897793 -9.130057827298764 … -5.294353669215357 -7.547399206522908; … ; -4.149589921644167 -5.294353669215358 … -1.9094492399160095 -2.8946123678530435; -6.287956198200511 -7.547399206522908 … -2.894612367853043 -4.485542759373015;;; -11.100308396743825 -11.10030835676079 … -6.287956198200512 -9.11184822357922; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898; … ; -6.2879561982005105 -7.54739920652291 … -2.894612367853043 -4.485542759373014; -9.111848223579221 -10.053883826553898 … -4.485542759373015 -6.871104500136731])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [0.0, 0.5624107360872233, 2.249642944348893, 5.061696624785009, 8.998571777395572, 14.06026840218058, 14.06026840218058, 8.998571777395572, 5.061696624785009, 2.249642944348893  …  0.7498809814496308, 2.062172698986485, 4.499285888697785, 8.061220550583531, 12.747976684643724, 11.060744476382055, 6.748928833046679, 3.561934661885747, 1.499761962899262, 0.5624107360872233]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), [-12.247569668719164 -11.100308396743765 … -8.28984577241382 -11.100308396743825; -11.100308396743765 -9.130057825949084 … -9.130057795897791 -11.100308356760788; … ; -8.289845772413821 -9.130057795897791 … -4.149589921644165 -6.287956198200511; -11.100308396743824 -11.10030835676079 … -6.287956198200513 -9.111848223579221;;; -11.100308396743767 -9.130057825949082 … -9.130057795897793 -11.10030835676079; -9.130057825949084 -6.9031594819829545 … -9.130057827298765 -10.053883826553793; … ; -9.130057795897791 -9.130057827298765 … -5.294353669215358 -7.547399206522909; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898;;; -8.289845772414118 -6.307621931517568 … -8.289845781013073 -9.11184819352789; -6.30762193151757 -4.5166556658162715 … -7.547399237612741 -7.547399206523141; … ; -8.28984578101307 -7.54739923761274 … -5.768969083582212 -7.5473992376128125; -9.11184819352789 -7.547399206523141 … -7.547399237612813 -9.111848224929128;;; … ;;; -5.301031718250632 -6.307621955789777 … -2.5497035732767115 -3.8495821793885945; -6.307621955789776 -6.903159495209783 … -3.3290606985469875 -4.878419358631457; … ; -2.549703573276711 -3.329060698546988 … -1.2567984709031477 -1.8141947460417418; -3.8495821793885954 -4.878419358631459 … -1.8141947460417418 -2.7147673353233386;;; -8.289845772413821 -9.130057795897791 … -4.149589921644168 -6.2879561982005105; -9.130057795897793 -9.130057827298764 … -5.294353669215357 -7.547399206522908; … ; -4.149589921644167 -5.294353669215358 … -1.9094492399160095 -2.8946123678530435; -6.287956198200511 -7.547399206522908 … -2.894612367853043 -4.485542759373015;;; -11.100308396743825 -11.10030835676079 … -6.287956198200512 -9.11184822357922; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898; … ; -6.2879561982005105 -7.54739920652291 … -2.894612367853043 -4.485542759373014; -9.111848223579221 -10.053883826553898 … -4.485542759373015 -6.871104500136731]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([     0,      0,      0], spin = 1, num. G vectors =   749), ComplexF64[0.11162114718647566 + 0.0im 0.17292273765511482 + 0.0im … 0.0 + 0.0im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … -0.05030254922547522 - 0.0im 0.0503025492254752 + 0.0im; … ; 0.08537828309138949 + 0.0im 0.10863402648960857 + 0.0im … -0.0 + 0.08075097926136235im 0.0 + 0.0im; 0.10094779392345996 + 0.0im 0.14590894423989453 + 0.0im … 0.05030254922547522 + 0.0im 0.0503025492254752 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.006590751073173412 + 0.005011889648043248im -0.05843512236638401 - 0.00424563362204333im … 0.030273960624500988 - 0.0001411828423063888im -0.0045154815288994 + 0.015412426403481694im; -0.020776421227586547 + 0.0019164804264790555im -0.0724193221586831 + 0.02167355899203438im … 0.014699295234941262 - 0.013630717977997414im -0.007188978585903744 + 0.03697022572142858im; … ; -0.02126784534246228 + 0.0009304139362522005im -0.00027478548426060345 - 0.014777188577632352im … 0.005431567172966982 - 0.0050866363527247984im -0.01360498326260422 - 0.021163735268609984im; -0.003317846449104048 + 0.0014964988592278206im -0.02396942665590401 - 0.032288265410661904im … 0.022999617001938637 + 0.0013892786415339495im -0.01120641144406332 - 0.005958267434305826im;;; 0.05171821212553972 + 0.01204989479820523im 0.049689230099891186 - 0.014571420165949752im … 0.044355490098205774 - 0.045458757936398954im -0.013996840543991723 - 0.055957408306687564im; 0.01941909165720651 - 0.015659685407431415im 0.003777018811871865 - 0.055801239863017625im … -0.014818933065756754 - 0.05722826483434522im -0.04532280577404386 - 0.01613832141585906im; … ; -0.006864176817873012 + 0.0057328393526506274im -0.0037631577345212976 + 0.011964368080766717im … 0.03234659592812998 + 0.01193669218599968im 0.04068162261568535 - 0.023161476049728187im; 0.01518470202546951 + 0.026226910884597554im 0.047855800872386396 + 0.025994715390773214im … 0.04809681947366119 - 0.009926521190322668im 0.02166381480659913 - 0.043531048821313964im;;; 0.11328077551050222 - 0.046765681626135994im 0.025553870913265574 - 0.06149702016611937im … -0.006280484383619295 - 0.038309399370623595im 0.00855537734957762 + 0.003624935322308496im; 0.049143077336865584 - 0.10313973110262964im -0.022668042226688757 - 0.023762623644258737im … -0.013858400094721005 - 0.001411151419306547im 0.03003754817830471 + 0.005530871974003799im; … ; 0.01427785825831694 + 0.041101310132492686im 0.04545791283389862 + 0.021751210457962463im … 0.05449568967797973 - 0.022002531551140833im 0.01135910400242521 - 0.027655107833896873im; 0.10107089615885059 + 0.0369372104753762im 0.06386595382384488 - 0.02520479778216335im … 0.029236670912450587 - 0.05377002792544148im 0.0035923065713316642 + 4.7935798083688363e-5im;;; … ;;; -0.05609010658084411 - 0.011899974299041167im -0.08402935536931136 + 0.04109215218834295im … -0.03794454541400234 + 0.06655120718861543im 0.0053273591297483755 + 0.05117655037041843im; -0.07037980325903602 + 0.02398219011193805im -0.021275809507599476 + 0.03473879887673657im … -0.0010986712354225485 + 0.01196765517401952im -0.025481576044792578 - 0.008801779100759868im; … ; -0.019752631198978042 + 0.0616477653582896im -0.01429768547833423 - 0.021204919490329915im … -0.09413664094525076 - 0.036356001829983296im -0.12937786434544846 + 0.059429675389772875im; 0.0009027348023277204 + 0.023412885397766155im -0.07327310077785343 - 0.01471599007029439im … -0.10581348410403366 + 0.045060884221975205im -0.047633897007701084 + 0.10672157098843926im;;; -0.13598288893542773 + 0.05518099045321252im -0.0458484427309837 + 0.1055135558857125im … 0.03241110467370967 + 0.09960411328673179im -0.027078685823327328 - 0.008140481981747053im; -0.06859705613435639 + 0.08676899411369712im -0.004284921291323504 + 0.03545486402319242im … 0.013244084749773906 + 0.004327764289637685im -0.06490830799176597 + 0.0067848245331058946im; … ; -0.02016037644659215 - 0.04054277695985198im -0.08244011108840969 - 0.01551555461739455im … -0.13054073113054399 + 0.05242982485726248im -0.025900802010202867 + 0.06423239324747027im; -0.10502292739134256 - 0.031777976873423604im -0.10157899586666058 + 0.06183760891486935im … -0.04952254273778219 + 0.1259408809482883im 0.012402153770937197 + 0.03893093973545212im;;; -0.0659246528350348 + 0.12604630321232208im -0.004324969312196662 + 0.029605850490276923im … 0.08305617498778078 + 0.032484277214187306im -0.06870872379776703 + 0.0181601039780923im; -0.007466250166042819 + 0.07238446291661794im -0.0524638498478381 - 0.004009555328105811im … 0.029608929887536828 - 0.014459462367375917im -0.05460632830799058 + 0.05715892761388656im; … ; -0.12590592826842287 - 0.046267303603817755im -0.04956823172695797 + 0.0332956110022698im … -0.016253277377743167 + 0.03664090286319785im -0.02630255379765496 - 0.07024088409144105im; -0.12449962273478951 + 0.057143250443078566im -0.022658111259848478 + 0.06886638888439103im … 0.03815115086533444 + 0.07602302954541404im -0.08155712685530944 - 0.04309056638586965im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668719164 -11.100308396743765 … -8.28984577241382 -11.100308396743825; -11.100308396743765 -9.130057825949084 … -9.130057795897791 -11.100308356760788; … ; -8.289845772413821 -9.130057795897791 … -4.149589921644165 -6.287956198200511; -11.100308396743824 -11.10030835676079 … -6.287956198200513 -9.111848223579221;;; -11.100308396743767 -9.130057825949082 … -9.130057795897793 -11.10030835676079; -9.130057825949084 -6.9031594819829545 … -9.130057827298765 -10.053883826553793; … ; -9.130057795897791 -9.130057827298765 … -5.294353669215358 -7.547399206522909; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898;;; -8.289845772414118 -6.307621931517568 … -8.289845781013073 -9.11184819352789; -6.30762193151757 -4.5166556658162715 … -7.547399237612741 -7.547399206523141; … ; -8.28984578101307 -7.54739923761274 … -5.768969083582212 -7.5473992376128125; -9.11184819352789 -7.547399206523141 … -7.547399237612813 -9.111848224929128;;; … ;;; -5.301031718250632 -6.307621955789777 … -2.5497035732767115 -3.8495821793885945; -6.307621955789776 -6.903159495209783 … -3.3290606985469875 -4.878419358631457; … ; -2.549703573276711 -3.329060698546988 … -1.2567984709031477 -1.8141947460417418; -3.8495821793885954 -4.878419358631459 … -1.8141947460417418 -2.7147673353233386;;; -8.289845772413821 -9.130057795897791 … -4.149589921644168 -6.2879561982005105; -9.130057795897793 -9.130057827298764 … -5.294353669215357 -7.547399206522908; … ; -4.149589921644167 -5.294353669215358 … -1.9094492399160095 -2.8946123678530435; -6.287956198200511 -7.547399206522908 … -2.894612367853043 -4.485542759373015;;; -11.100308396743825 -11.10030835676079 … -6.287956198200512 -9.11184822357922; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898; … ; -6.2879561982005105 -7.54739920652291 … -2.894612367853043 -4.485542759373014; -9.111848223579221 -10.053883826553898 … -4.485542759373015 -6.871104500136731])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [0.062490081787469245, 0.9998413085995079, 3.062014007585993, 6.249008178746925, 10.5608238220823, 12.248056030343973, 7.561299896283778, 3.9993652343980317, 1.5622520446867312, 0.24996032714987704  …  2.7495635986486464, 5.561617279084762, 9.498492431695325, 14.560189056480331, 14.560189056480338, 9.498492431695325, 5.561617279084762, 2.7495635986486464, 1.0623313903869773, 0.49992065429975385]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), [-12.247569668719164 -11.100308396743765 … -8.28984577241382 -11.100308396743825; -11.100308396743765 -9.130057825949084 … -9.130057795897791 -11.100308356760788; … ; -8.289845772413821 -9.130057795897791 … -4.149589921644165 -6.287956198200511; -11.100308396743824 -11.10030835676079 … -6.287956198200513 -9.111848223579221;;; -11.100308396743767 -9.130057825949082 … -9.130057795897793 -11.10030835676079; -9.130057825949084 -6.9031594819829545 … -9.130057827298765 -10.053883826553793; … ; -9.130057795897791 -9.130057827298765 … -5.294353669215358 -7.547399206522909; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898;;; -8.289845772414118 -6.307621931517568 … -8.289845781013073 -9.11184819352789; -6.30762193151757 -4.5166556658162715 … -7.547399237612741 -7.547399206523141; … ; -8.28984578101307 -7.54739923761274 … -5.768969083582212 -7.5473992376128125; -9.11184819352789 -7.547399206523141 … -7.547399237612813 -9.111848224929128;;; … ;;; -5.301031718250632 -6.307621955789777 … -2.5497035732767115 -3.8495821793885945; -6.307621955789776 -6.903159495209783 … -3.3290606985469875 -4.878419358631457; … ; -2.549703573276711 -3.329060698546988 … -1.2567984709031477 -1.8141947460417418; -3.8495821793885954 -4.878419358631459 … -1.8141947460417418 -2.7147673353233386;;; -8.289845772413821 -9.130057795897791 … -4.149589921644168 -6.2879561982005105; -9.130057795897793 -9.130057827298764 … -5.294353669215357 -7.547399206522908; … ; -4.149589921644167 -5.294353669215358 … -1.9094492399160095 -2.8946123678530435; -6.287956198200511 -7.547399206522908 … -2.894612367853043 -4.485542759373015;;; -11.100308396743825 -11.10030835676079 … -6.287956198200512 -9.11184822357922; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898; … ; -6.2879561982005105 -7.54739920652291 … -2.894612367853043 -4.485542759373014; -9.111848223579221 -10.053883826553898 … -4.485542759373015 -6.871104500136731]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,      0,      0], spin = 1, num. G vectors =   757), ComplexF64[0.11038155824020969 + 0.0im 0.1697292679710574 + 0.0im … -0.009426647060181403 - 0.016327431653253982im 0.009426647060181401 + 0.01632743165325398im; 0.09335704685777356 + 0.0im 0.12740009431942179 + 0.0im … -0.052421044862493965 + 0.030265304362562334im 0.05242104486249396 - 0.030265304362562327im; … ; 0.09232028665365559 + 0.0im 0.12492048143428733 + 0.0im … 0.03728123116232768 + 0.06457298654187171im 0.0074562462324655335 + 0.01291459730837434im; 0.10208144135055229 + 0.0im 0.14872488279907023 + 0.0im … 0.029470953026436673 - 0.01701506266308801im 0.05894190605287333 - 0.03403012532617602im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.006590751073173412 + 0.005011889648043248im -0.05843512236638401 - 0.00424563362204333im … 0.030273960624500988 - 0.0001411828423063888im -0.0045154815288994 + 0.015412426403481694im; -0.020776421227586547 + 0.0019164804264790555im -0.0724193221586831 + 0.02167355899203438im … 0.014699295234941262 - 0.013630717977997414im -0.007188978585903744 + 0.03697022572142858im; … ; -0.02126784534246228 + 0.0009304139362522005im -0.00027478548426060345 - 0.014777188577632352im … 0.005431567172966982 - 0.0050866363527247984im -0.01360498326260422 - 0.021163735268609984im; -0.003317846449104048 + 0.0014964988592278206im -0.02396942665590401 - 0.032288265410661904im … 0.022999617001938637 + 0.0013892786415339495im -0.01120641144406332 - 0.005958267434305826im;;; 0.05171821212553972 + 0.01204989479820523im 0.049689230099891186 - 0.014571420165949752im … 0.044355490098205774 - 0.045458757936398954im -0.013996840543991723 - 0.055957408306687564im; 0.01941909165720651 - 0.015659685407431415im 0.003777018811871865 - 0.055801239863017625im … -0.014818933065756754 - 0.05722826483434522im -0.04532280577404386 - 0.01613832141585906im; … ; -0.006864176817873012 + 0.0057328393526506274im -0.0037631577345212976 + 0.011964368080766717im … 0.03234659592812998 + 0.01193669218599968im 0.04068162261568535 - 0.023161476049728187im; 0.01518470202546951 + 0.026226910884597554im 0.047855800872386396 + 0.025994715390773214im … 0.04809681947366119 - 0.009926521190322668im 0.02166381480659913 - 0.043531048821313964im;;; 0.11328077551050222 - 0.046765681626135994im 0.025553870913265574 - 0.06149702016611937im … -0.006280484383619295 - 0.038309399370623595im 0.00855537734957762 + 0.003624935322308496im; 0.049143077336865584 - 0.10313973110262964im -0.022668042226688757 - 0.023762623644258737im … -0.013858400094721005 - 0.001411151419306547im 0.03003754817830471 + 0.005530871974003799im; … ; 0.01427785825831694 + 0.041101310132492686im 0.04545791283389862 + 0.021751210457962463im … 0.05449568967797973 - 0.022002531551140833im 0.01135910400242521 - 0.027655107833896873im; 0.10107089615885059 + 0.0369372104753762im 0.06386595382384488 - 0.02520479778216335im … 0.029236670912450587 - 0.05377002792544148im 0.0035923065713316642 + 4.7935798083688363e-5im;;; … ;;; -0.05609010658084411 - 0.011899974299041167im -0.08402935536931136 + 0.04109215218834295im … -0.03794454541400234 + 0.06655120718861543im 0.0053273591297483755 + 0.05117655037041843im; -0.07037980325903602 + 0.02398219011193805im -0.021275809507599476 + 0.03473879887673657im … -0.0010986712354225485 + 0.01196765517401952im -0.025481576044792578 - 0.008801779100759868im; … ; -0.019752631198978042 + 0.0616477653582896im -0.01429768547833423 - 0.021204919490329915im … -0.09413664094525076 - 0.036356001829983296im -0.12937786434544846 + 0.059429675389772875im; 0.0009027348023277204 + 0.023412885397766155im -0.07327310077785343 - 0.01471599007029439im … -0.10581348410403366 + 0.045060884221975205im -0.047633897007701084 + 0.10672157098843926im;;; -0.13598288893542773 + 0.05518099045321252im -0.0458484427309837 + 0.1055135558857125im … 0.03241110467370967 + 0.09960411328673179im -0.027078685823327328 - 0.008140481981747053im; -0.06859705613435639 + 0.08676899411369712im -0.004284921291323504 + 0.03545486402319242im … 0.013244084749773906 + 0.004327764289637685im -0.06490830799176597 + 0.0067848245331058946im; … ; -0.02016037644659215 - 0.04054277695985198im -0.08244011108840969 - 0.01551555461739455im … -0.13054073113054399 + 0.05242982485726248im -0.025900802010202867 + 0.06423239324747027im; -0.10502292739134256 - 0.031777976873423604im -0.10157899586666058 + 0.06183760891486935im … -0.04952254273778219 + 0.1259408809482883im 0.012402153770937197 + 0.03893093973545212im;;; -0.0659246528350348 + 0.12604630321232208im -0.004324969312196662 + 0.029605850490276923im … 0.08305617498778078 + 0.032484277214187306im -0.06870872379776703 + 0.0181601039780923im; -0.007466250166042819 + 0.07238446291661794im -0.0524638498478381 - 0.004009555328105811im … 0.029608929887536828 - 0.014459462367375917im -0.05460632830799058 + 0.05715892761388656im; … ; -0.12590592826842287 - 0.046267303603817755im -0.04956823172695797 + 0.0332956110022698im … -0.016253277377743167 + 0.03664090286319785im -0.02630255379765496 - 0.07024088409144105im; -0.12449962273478951 + 0.057143250443078566im -0.022658111259848478 + 0.06886638888439103im … 0.03815115086533444 + 0.07602302954541404im -0.08155712685530944 - 0.04309056638586965im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668719164 -11.100308396743765 … -8.28984577241382 -11.100308396743825; -11.100308396743765 -9.130057825949084 … -9.130057795897791 -11.100308356760788; … ; -8.289845772413821 -9.130057795897791 … -4.149589921644165 -6.287956198200511; -11.100308396743824 -11.10030835676079 … -6.287956198200513 -9.111848223579221;;; -11.100308396743767 -9.130057825949082 … -9.130057795897793 -11.10030835676079; -9.130057825949084 -6.9031594819829545 … -9.130057827298765 -10.053883826553793; … ; -9.130057795897791 -9.130057827298765 … -5.294353669215358 -7.547399206522909; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898;;; -8.289845772414118 -6.307621931517568 … -8.289845781013073 -9.11184819352789; -6.30762193151757 -4.5166556658162715 … -7.547399237612741 -7.547399206523141; … ; -8.28984578101307 -7.54739923761274 … -5.768969083582212 -7.5473992376128125; -9.11184819352789 -7.547399206523141 … -7.547399237612813 -9.111848224929128;;; … ;;; -5.301031718250632 -6.307621955789777 … -2.5497035732767115 -3.8495821793885945; -6.307621955789776 -6.903159495209783 … -3.3290606985469875 -4.878419358631457; … ; -2.549703573276711 -3.329060698546988 … -1.2567984709031477 -1.8141947460417418; -3.8495821793885954 -4.878419358631459 … -1.8141947460417418 -2.7147673353233386;;; -8.289845772413821 -9.130057795897791 … -4.149589921644168 -6.2879561982005105; -9.130057795897793 -9.130057827298764 … -5.294353669215357 -7.547399206522908; … ; -4.149589921644167 -5.294353669215358 … -1.9094492399160095 -2.8946123678530435; -6.287956198200511 -7.547399206522908 … -2.894612367853043 -4.485542759373015;;; -11.100308396743825 -11.10030835676079 … -6.287956198200512 -9.11184822357922; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898; … ; -6.2879561982005105 -7.54739920652291 … -2.894612367853043 -4.485542759373014; -9.111848223579221 -10.053883826553898 … -4.485542759373015 -6.871104500136731])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [0.083320109049959, 0.8956911722870592, 2.8328837076986058, 5.894897715284598, 10.081733195045036, 12.893786875481155, 8.082050577846019, 4.395135752385337, 1.8330423990990978, 0.3957705179873052  …  0.8332010904995898, 2.3954531351863206, 5.082526652047498, 8.894421641083122, 13.83113810229319, 9.89426294968263, 5.832407633497128, 2.895373789486075, 1.083161417649467, 0.3957705179873052]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), [-12.247569668719164 -11.100308396743765 … -8.28984577241382 -11.100308396743825; -11.100308396743765 -9.130057825949084 … -9.130057795897791 -11.100308356760788; … ; -8.289845772413821 -9.130057795897791 … -4.149589921644165 -6.287956198200511; -11.100308396743824 -11.10030835676079 … -6.287956198200513 -9.111848223579221;;; -11.100308396743767 -9.130057825949082 … -9.130057795897793 -11.10030835676079; -9.130057825949084 -6.9031594819829545 … -9.130057827298765 -10.053883826553793; … ; -9.130057795897791 -9.130057827298765 … -5.294353669215358 -7.547399206522909; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898;;; -8.289845772414118 -6.307621931517568 … -8.289845781013073 -9.11184819352789; -6.30762193151757 -4.5166556658162715 … -7.547399237612741 -7.547399206523141; … ; -8.28984578101307 -7.54739923761274 … -5.768969083582212 -7.5473992376128125; -9.11184819352789 -7.547399206523141 … -7.547399237612813 -9.111848224929128;;; … ;;; -5.301031718250632 -6.307621955789777 … -2.5497035732767115 -3.8495821793885945; -6.307621955789776 -6.903159495209783 … -3.3290606985469875 -4.878419358631457; … ; -2.549703573276711 -3.329060698546988 … -1.2567984709031477 -1.8141947460417418; -3.8495821793885954 -4.878419358631459 … -1.8141947460417418 -2.7147673353233386;;; -8.289845772413821 -9.130057795897791 … -4.149589921644168 -6.2879561982005105; -9.130057795897793 -9.130057827298764 … -5.294353669215357 -7.547399206522908; … ; -4.149589921644167 -5.294353669215358 … -1.9094492399160095 -2.8946123678530435; -6.287956198200511 -7.547399206522908 … -2.894612367853043 -4.485542759373015;;; -11.100308396743825 -11.10030835676079 … -6.287956198200512 -9.11184822357922; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898; … ; -6.2879561982005105 -7.54739920652291 … -2.894612367853043 -4.485542759373014; -9.111848223579221 -10.053883826553898 … -4.485542759373015 -6.871104500136731]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([ 0.333,  0.333,      0], spin = 1, num. G vectors =   749), ComplexF64[0.10997142862853636 + 0.0im 0.1686758360708126 + 0.0im … -0.032495727623724026 - 0.018761417091069828im -5.710372280586092e-19 - 3.2968849733693577e-19im; 0.09511091805015323 + 0.0im 0.13162182200636915 + 0.0im … -0.03876707908042239 + 0.06714655062833208im 0.02326024744825342 - 0.04028793037699923im; … ; 0.09197726483082143 + 0.0im 0.12410271910068073 + 0.0im … 0.051406644402565774 + 0.029679639983956733im 6.990521527121634e-18 + 4.035979485459552e-18im; 0.10399921515860865 + 0.0im 0.15351809108742234 + 0.0im … 0.008717893888213726 - 0.015099835149380354im 0.02615368166464116 - 0.04529950544814103im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.006590751073173412 + 0.005011889648043248im -0.05843512236638401 - 0.00424563362204333im … 0.030273960624500988 - 0.0001411828423063888im -0.0045154815288994 + 0.015412426403481694im; -0.020776421227586547 + 0.0019164804264790555im -0.0724193221586831 + 0.02167355899203438im … 0.014699295234941262 - 0.013630717977997414im -0.007188978585903744 + 0.03697022572142858im; … ; -0.02126784534246228 + 0.0009304139362522005im -0.00027478548426060345 - 0.014777188577632352im … 0.005431567172966982 - 0.0050866363527247984im -0.01360498326260422 - 0.021163735268609984im; -0.003317846449104048 + 0.0014964988592278206im -0.02396942665590401 - 0.032288265410661904im … 0.022999617001938637 + 0.0013892786415339495im -0.01120641144406332 - 0.005958267434305826im;;; 0.05171821212553972 + 0.01204989479820523im 0.049689230099891186 - 0.014571420165949752im … 0.044355490098205774 - 0.045458757936398954im -0.013996840543991723 - 0.055957408306687564im; 0.01941909165720651 - 0.015659685407431415im 0.003777018811871865 - 0.055801239863017625im … -0.014818933065756754 - 0.05722826483434522im -0.04532280577404386 - 0.01613832141585906im; … ; -0.006864176817873012 + 0.0057328393526506274im -0.0037631577345212976 + 0.011964368080766717im … 0.03234659592812998 + 0.01193669218599968im 0.04068162261568535 - 0.023161476049728187im; 0.01518470202546951 + 0.026226910884597554im 0.047855800872386396 + 0.025994715390773214im … 0.04809681947366119 - 0.009926521190322668im 0.02166381480659913 - 0.043531048821313964im;;; 0.11328077551050222 - 0.046765681626135994im 0.025553870913265574 - 0.06149702016611937im … -0.006280484383619295 - 0.038309399370623595im 0.00855537734957762 + 0.003624935322308496im; 0.049143077336865584 - 0.10313973110262964im -0.022668042226688757 - 0.023762623644258737im … -0.013858400094721005 - 0.001411151419306547im 0.03003754817830471 + 0.005530871974003799im; … ; 0.01427785825831694 + 0.041101310132492686im 0.04545791283389862 + 0.021751210457962463im … 0.05449568967797973 - 0.022002531551140833im 0.01135910400242521 - 0.027655107833896873im; 0.10107089615885059 + 0.0369372104753762im 0.06386595382384488 - 0.02520479778216335im … 0.029236670912450587 - 0.05377002792544148im 0.0035923065713316642 + 4.7935798083688363e-5im;;; … ;;; -0.05609010658084411 - 0.011899974299041167im -0.08402935536931136 + 0.04109215218834295im … -0.03794454541400234 + 0.06655120718861543im 0.0053273591297483755 + 0.05117655037041843im; -0.07037980325903602 + 0.02398219011193805im -0.021275809507599476 + 0.03473879887673657im … -0.0010986712354225485 + 0.01196765517401952im -0.025481576044792578 - 0.008801779100759868im; … ; -0.019752631198978042 + 0.0616477653582896im -0.01429768547833423 - 0.021204919490329915im … -0.09413664094525076 - 0.036356001829983296im -0.12937786434544846 + 0.059429675389772875im; 0.0009027348023277204 + 0.023412885397766155im -0.07327310077785343 - 0.01471599007029439im … -0.10581348410403366 + 0.045060884221975205im -0.047633897007701084 + 0.10672157098843926im;;; -0.13598288893542773 + 0.05518099045321252im -0.0458484427309837 + 0.1055135558857125im … 0.03241110467370967 + 0.09960411328673179im -0.027078685823327328 - 0.008140481981747053im; -0.06859705613435639 + 0.08676899411369712im -0.004284921291323504 + 0.03545486402319242im … 0.013244084749773906 + 0.004327764289637685im -0.06490830799176597 + 0.0067848245331058946im; … ; -0.02016037644659215 - 0.04054277695985198im -0.08244011108840969 - 0.01551555461739455im … -0.13054073113054399 + 0.05242982485726248im -0.025900802010202867 + 0.06423239324747027im; -0.10502292739134256 - 0.031777976873423604im -0.10157899586666058 + 0.06183760891486935im … -0.04952254273778219 + 0.1259408809482883im 0.012402153770937197 + 0.03893093973545212im;;; -0.0659246528350348 + 0.12604630321232208im -0.004324969312196662 + 0.029605850490276923im … 0.08305617498778078 + 0.032484277214187306im -0.06870872379776703 + 0.0181601039780923im; -0.007466250166042819 + 0.07238446291661794im -0.0524638498478381 - 0.004009555328105811im … 0.029608929887536828 - 0.014459462367375917im -0.05460632830799058 + 0.05715892761388656im; … ; -0.12590592826842287 - 0.046267303603817755im -0.04956823172695797 + 0.0332956110022698im … -0.016253277377743167 + 0.03664090286319785im -0.02630255379765496 - 0.07024088409144105im; -0.12449962273478951 + 0.057143250443078566im -0.022658111259848478 + 0.06886638888439103im … 0.03815115086533444 + 0.07602302954541404im -0.08155712685530944 - 0.04309056638586965im],)]), DFTK.DftHamiltonianBlock(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), DFTK.RealFourierOperator[DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.NoopOperator{Float64}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740)), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668719164 -11.100308396743765 … -8.28984577241382 -11.100308396743825; -11.100308396743765 -9.130057825949084 … -9.130057795897791 -11.100308356760788; … ; -8.289845772413821 -9.130057795897791 … -4.149589921644165 -6.287956198200511; -11.100308396743824 -11.10030835676079 … -6.287956198200513 -9.111848223579221;;; -11.100308396743767 -9.130057825949082 … -9.130057795897793 -11.10030835676079; -9.130057825949084 -6.9031594819829545 … -9.130057827298765 -10.053883826553793; … ; -9.130057795897791 -9.130057827298765 … -5.294353669215358 -7.547399206522909; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898;;; -8.289845772414118 -6.307621931517568 … -8.289845781013073 -9.11184819352789; -6.30762193151757 -4.5166556658162715 … -7.547399237612741 -7.547399206523141; … ; -8.28984578101307 -7.54739923761274 … -5.768969083582212 -7.5473992376128125; -9.11184819352789 -7.547399206523141 … -7.547399237612813 -9.111848224929128;;; … ;;; -5.301031718250632 -6.307621955789777 … -2.5497035732767115 -3.8495821793885945; -6.307621955789776 -6.903159495209783 … -3.3290606985469875 -4.878419358631457; … ; -2.549703573276711 -3.329060698546988 … -1.2567984709031477 -1.8141947460417418; -3.8495821793885954 -4.878419358631459 … -1.8141947460417418 -2.7147673353233386;;; -8.289845772413821 -9.130057795897791 … -4.149589921644168 -6.2879561982005105; -9.130057795897793 -9.130057827298764 … -5.294353669215357 -7.547399206522908; … ; -4.149589921644167 -5.294353669215358 … -1.9094492399160095 -2.8946123678530435; -6.287956198200511 -7.547399206522908 … -2.894612367853043 -4.485542759373015;;; -11.100308396743825 -11.10030835676079 … -6.287956198200512 -9.11184822357922; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898; … ; -6.2879561982005105 -7.54739920652291 … -2.894612367853043 -4.485542759373014; -9.111848223579221 -10.053883826553898 … -4.485542759373015 -6.871104500136731])], DFTK.FourierMultiplication{Float64, Vector{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [0.16664021809991797, 0.22913029988738726, 1.4164418538493029, 3.728574879985665, 7.165529378296473, 11.727305348781728, 11.164894612694503, 6.728098805784188, 3.4161244710483185, 1.2289716084868951  …  0.41660054524979495, 1.228971608486895, 3.1661641438984414, 6.2281781514844345, 10.415013631244872, 13.22706731168099, 8.415331014045858, 4.7284161885851725, 2.166322835298934, 0.7290509541871413]), DFTK.RealSpaceMultiplication{Float64, Array{Float64, 3}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), [-12.247569668719164 -11.100308396743765 … -8.28984577241382 -11.100308396743825; -11.100308396743765 -9.130057825949084 … -9.130057795897791 -11.100308356760788; … ; -8.289845772413821 -9.130057795897791 … -4.149589921644165 -6.287956198200511; -11.100308396743824 -11.10030835676079 … -6.287956198200513 -9.111848223579221;;; -11.100308396743767 -9.130057825949082 … -9.130057795897793 -11.10030835676079; -9.130057825949084 -6.9031594819829545 … -9.130057827298765 -10.053883826553793; … ; -9.130057795897791 -9.130057827298765 … -5.294353669215358 -7.547399206522909; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898;;; -8.289845772414118 -6.307621931517568 … -8.289845781013073 -9.11184819352789; -6.30762193151757 -4.5166556658162715 … -7.547399237612741 -7.547399206523141; … ; -8.28984578101307 -7.54739923761274 … -5.768969083582212 -7.5473992376128125; -9.11184819352789 -7.547399206523141 … -7.547399237612813 -9.111848224929128;;; … ;;; -5.301031718250632 -6.307621955789777 … -2.5497035732767115 -3.8495821793885945; -6.307621955789776 -6.903159495209783 … -3.3290606985469875 -4.878419358631457; … ; -2.549703573276711 -3.329060698546988 … -1.2567984709031477 -1.8141947460417418; -3.8495821793885954 -4.878419358631459 … -1.8141947460417418 -2.7147673353233386;;; -8.289845772413821 -9.130057795897791 … -4.149589921644168 -6.2879561982005105; -9.130057795897793 -9.130057827298764 … -5.294353669215357 -7.547399206522908; … ; -4.149589921644167 -5.294353669215358 … -1.9094492399160095 -2.8946123678530435; -6.287956198200511 -7.547399206522908 … -2.894612367853043 -4.485542759373015;;; -11.100308396743825 -11.10030835676079 … -6.287956198200512 -9.11184822357922; -11.100308356760788 -10.053883826553793 … -7.54739920652291 -10.053883826553898; … ; -6.2879561982005105 -7.54739920652291 … -2.894612367853043 -4.485542759373014; -9.111848223579221 -10.053883826553898 … -4.485542759373015 -6.871104500136731]), DFTK.NonlocalOperator{Float64, Matrix{ComplexF64}, Matrix{Float64}}(PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), KPoint([-0.333,  0.333,      0], spin = 1, num. G vectors =   740), ComplexF64[0.1083460922901765 + 0.0im 0.16451669692939747 + 0.0im … -0.0 + 1.0213144005610526e-18im 0.0 - 0.03679672923035902im; 0.10714287388793554 + 0.0im 0.16145393303017874 + 0.0im … -0.054392079538503724 - 0.0im 0.018130693179501244 + 0.0im; … ; 0.07579045242767471 + 0.0im 0.08711041809792076 + 0.0im … -0.0 + 0.06906475263474503im 0.0 - 0.023021584211581677im; 0.09798590385967747 + 0.0im 0.13861415332258223 + 0.0im … 0.048374574773583326 + 0.0im 0.016124858257861113 + 0.0im], [5.90692831 -1.26189397 … 0.0 0.0; -1.26189397 3.25819622 … 0.0 0.0; … ; 0.0 0.0 … 2.72701346 0.0; 0.0 0.0 … 0.0 2.72701346]), nothing, @NamedTuple{ψ_reals::Array{ComplexF64, 3}}[(ψ_reals = [-0.006590751073173412 + 0.005011889648043248im -0.05843512236638401 - 0.00424563362204333im … 0.030273960624500988 - 0.0001411828423063888im -0.0045154815288994 + 0.015412426403481694im; -0.020776421227586547 + 0.0019164804264790555im -0.0724193221586831 + 0.02167355899203438im … 0.014699295234941262 - 0.013630717977997414im -0.007188978585903744 + 0.03697022572142858im; … ; -0.02126784534246228 + 0.0009304139362522005im -0.00027478548426060345 - 0.014777188577632352im … 0.005431567172966982 - 0.0050866363527247984im -0.01360498326260422 - 0.021163735268609984im; -0.003317846449104048 + 0.0014964988592278206im -0.02396942665590401 - 0.032288265410661904im … 0.022999617001938637 + 0.0013892786415339495im -0.01120641144406332 - 0.005958267434305826im;;; 0.05171821212553972 + 0.01204989479820523im 0.049689230099891186 - 0.014571420165949752im … 0.044355490098205774 - 0.045458757936398954im -0.013996840543991723 - 0.055957408306687564im; 0.01941909165720651 - 0.015659685407431415im 0.003777018811871865 - 0.055801239863017625im … -0.014818933065756754 - 0.05722826483434522im -0.04532280577404386 - 0.01613832141585906im; … ; -0.006864176817873012 + 0.0057328393526506274im -0.0037631577345212976 + 0.011964368080766717im … 0.03234659592812998 + 0.01193669218599968im 0.04068162261568535 - 0.023161476049728187im; 0.01518470202546951 + 0.026226910884597554im 0.047855800872386396 + 0.025994715390773214im … 0.04809681947366119 - 0.009926521190322668im 0.02166381480659913 - 0.043531048821313964im;;; 0.11328077551050222 - 0.046765681626135994im 0.025553870913265574 - 0.06149702016611937im … -0.006280484383619295 - 0.038309399370623595im 0.00855537734957762 + 0.003624935322308496im; 0.049143077336865584 - 0.10313973110262964im -0.022668042226688757 - 0.023762623644258737im … -0.013858400094721005 - 0.001411151419306547im 0.03003754817830471 + 0.005530871974003799im; … ; 0.01427785825831694 + 0.041101310132492686im 0.04545791283389862 + 0.021751210457962463im … 0.05449568967797973 - 0.022002531551140833im 0.01135910400242521 - 0.027655107833896873im; 0.10107089615885059 + 0.0369372104753762im 0.06386595382384488 - 0.02520479778216335im … 0.029236670912450587 - 0.05377002792544148im 0.0035923065713316642 + 4.7935798083688363e-5im;;; … ;;; -0.05609010658084411 - 0.011899974299041167im -0.08402935536931136 + 0.04109215218834295im … -0.03794454541400234 + 0.06655120718861543im 0.0053273591297483755 + 0.05117655037041843im; -0.07037980325903602 + 0.02398219011193805im -0.021275809507599476 + 0.03473879887673657im … -0.0010986712354225485 + 0.01196765517401952im -0.025481576044792578 - 0.008801779100759868im; … ; -0.019752631198978042 + 0.0616477653582896im -0.01429768547833423 - 0.021204919490329915im … -0.09413664094525076 - 0.036356001829983296im -0.12937786434544846 + 0.059429675389772875im; 0.0009027348023277204 + 0.023412885397766155im -0.07327310077785343 - 0.01471599007029439im … -0.10581348410403366 + 0.045060884221975205im -0.047633897007701084 + 0.10672157098843926im;;; -0.13598288893542773 + 0.05518099045321252im -0.0458484427309837 + 0.1055135558857125im … 0.03241110467370967 + 0.09960411328673179im -0.027078685823327328 - 0.008140481981747053im; -0.06859705613435639 + 0.08676899411369712im -0.004284921291323504 + 0.03545486402319242im … 0.013244084749773906 + 0.004327764289637685im -0.06490830799176597 + 0.0067848245331058946im; … ; -0.02016037644659215 - 0.04054277695985198im -0.08244011108840969 - 0.01551555461739455im … -0.13054073113054399 + 0.05242982485726248im -0.025900802010202867 + 0.06423239324747027im; -0.10502292739134256 - 0.031777976873423604im -0.10157899586666058 + 0.06183760891486935im … -0.04952254273778219 + 0.1259408809482883im 0.012402153770937197 + 0.03893093973545212im;;; -0.0659246528350348 + 0.12604630321232208im -0.004324969312196662 + 0.029605850490276923im … 0.08305617498778078 + 0.032484277214187306im -0.06870872379776703 + 0.0181601039780923im; -0.007466250166042819 + 0.07238446291661794im -0.0524638498478381 - 0.004009555328105811im … 0.029608929887536828 - 0.014459462367375917im -0.05460632830799058 + 0.05715892761388656im; … ; -0.12590592826842287 - 0.046267303603817755im -0.04956823172695797 + 0.0332956110022698im … -0.016253277377743167 + 0.03664090286319785im -0.02630255379765496 - 0.07024088409144105im; -0.12449962273478951 + 0.057143250443078566im -0.022658111259848478 + 0.06886638888439103im … 0.03815115086533444 + 0.07602302954541404im -0.08155712685530944 - 0.04309056638586965im],)])]), basis = PlaneWaveBasis(model = Model(lda_x+lda_c_pw, spin_polarization = :none), Ecut = 15.0 Ha, kgrid = MonkhorstPack([3, 3, 3])), energies = Energies(total = -7.910594396488505), converged = true, ρ = [7.589784540331132e-5 0.001126271272850894 … 0.006697037550126499 0.0011262712728509058; 0.0011262712728509008 0.005274334457400977 … 0.005274334457401006 0.0011262712728509125; … ; 0.006697037550126503 0.005274334457401002 … 0.02324475419105376 0.012258986825291047; 0.0011262712728509244 0.0011262712728509143 … 0.012258986825291047 0.0037700086299594245;;; 0.001126271272850896 0.00527433445740097 … 0.005274334457401009 0.0011262712728509054; 0.005274334457400974 0.014620065304678477 … 0.005274334457401009 0.002588080874890401; … ; 0.005274334457401012 0.005274334457401004 … 0.018107686646147262 0.008922003044788691; 0.001126271272850924 0.002588080874890404 … 0.008922003044788691 0.0025880808748904175;;; 0.006697037550126458 0.016412109101561167 … 0.006697037550126491 0.0037700086299594007; 0.016412109101561167 0.031277839315733386 … 0.008922003044788667 0.00892200304478865; … ; 0.006697037550126494 0.008922003044788665 … 0.016476756359453566 0.00892200304478869; 0.0037700086299594176 0.008922003044788651 … 0.00892200304478869 0.0037700086299594193;;; … ;;; 0.019853839853365612 0.01641210910156118 … 0.03715667363562487 0.027190800686537016; 0.01641210910156119 0.014620065304678482 … 0.03230127212637422 0.022322100931667446; … ; 0.03715667363562488 0.03230127212637422 … 0.04629698070151766 0.04263658273144315; 0.027190800686537037 0.022322100931667446 … 0.04263658273144314 0.03477222914196439;;; 0.006697037550126466 0.005274334457400972 … 0.02324475419105374 0.012258986825291007; 0.005274334457400977 0.005274334457400979 … 0.01810768664614723 0.008922003044788657; … ; 0.02324475419105374 0.018107686646147227 … 0.04037111033559333 0.03149160381138309; 0.012258986825291028 0.008922003044788658 … 0.03149160381138309 0.02004716343276519;;; 0.0011262712728508986 0.0011262712728508889 … 0.012258986825291033 0.003770008629959408; 0.001126271272850895 0.0025880808748903928 … 0.008922003044788676 0.0025880808748904014; … ; 0.012258986825291036 0.008922003044788672 … 0.031491603811383106 0.02004716343276521; 0.0037700086299594267 0.002588080874890405 … 0.02004716343276521 0.008952603496847237;;;;], eigenvalues = [[-0.17836835653861277, 0.2624919449924716, 0.2624919449924719, 0.26249194499247214, 0.3546921481682021, 0.3546921481682028, 0.35469214820685097], [-0.12755037617842607, 0.06475320594756544, 0.2254516651750458, 0.2254516651750461, 0.32197764961201275, 0.3892227690853713, 0.38922276908537207], [-0.1081872921643139, 0.07755003473528492, 0.17278328011546254, 0.17278328011546273, 0.2843518536202367, 0.3305476484334571, 0.5267232426410015], [-0.057773253743509376, 0.012724782206357832, 0.09766073750183164, 0.18417825333050863, 0.31522841796032947, 0.4720312182259224, 0.4979135175663154]], occupation = [[2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0]], εF = 0.2734218993063544, n_iter = 10, ψ = Matrix{ComplexF64}[[-0.9269285237936421 - 0.20617274069436362im -8.609011072341882e-14 + 7.0396680774101734e-15im … -2.4529152612109613e-13 + 1.3398853208943886e-13im -1.632208235480016e-7 + 4.911444413322297e-8im; -0.08383224894008455 + 0.053324958790160616im 0.02974059290862793 + 0.24060955122184455im … 0.0076152166790702846 - 0.42835963333646376im -0.17642367321150232 + 0.03850947497710801im; … ; 0.011477580990428324 + 0.002552909170980043im -0.016449312762646863 - 0.029561668677687843im … -0.029280775709886322 + 0.03863005367344602im -0.019708881061995358 + 0.03999719135323206im; -0.08383224894000572 + 0.05332495879011761im -0.3262831597995255 - 0.32511919564100067im … 0.0630723595030198 - 0.025532743516197703im -0.05607583969350533 + 0.3926703410757267im], [0.8284738008839745 - 0.4028768518926031im -0.056833156703912424 + 0.19491414514004005im … -1.2726103445461488e-11 + 1.5933260845753905e-10im -6.280982521420073e-12 - 1.4646680589811807e-10im; 0.02043374283881948 - 0.05911955582128507im -0.004332612458611616 - 0.007899157651920246im … 6.109288488843735e-10 + 7.798321664001384e-10im -8.812820077198972e-10 - 5.830245536449933e-10im; … ; -0.00444461123631117 + 0.0021613610242207705im 0.023664372970971174 - 0.081158979993491im … -0.10222223086912614 - 0.010420131781664316im 0.004177602704919156 + 0.023096280944219123im; 0.03819208309026022 - 0.11049855163568091im 0.048147965944861024 + 0.08778268937073153im … -0.35220292638810974 + 0.2870409248623561im 0.0852782329635576 + 0.05915371163038528im], [-0.13592401458584585 - 0.9154978561564844im 8.324400131519432e-15 - 1.5992172820428045e-14im … -2.0973843505666496e-12 - 2.950087011301559e-12im -3.2930255995339334e-9 - 3.422754117329875e-9im; -0.055052152316826496 - 0.04081826625707345im -0.042438065345719214 + 0.030389084399806667im … 0.003524386672123521 - 0.0257204271982922im 0.0004325811658267789 - 0.0033150652787208297im; … ; 0.001555966148220489 + 0.010480000000545879im -1.6496198505018082e-14 - 4.3016457576015356e-14im … 9.506376826798851e-11 + 3.408787442054711e-12im -0.02739216166381923 + 0.04697738377835475im; -0.12871943018393184 - 0.09543866592999216im 0.2384177594110352 - 0.170726383355963im … 0.05051488460383612 - 0.36864979264206754im 0.040053943510444535 + 0.1504239947787522im], [-0.6977911314634214 + 0.38988063004549656im 4.6702287853436495e-15 + 6.6846504012365854e-15im … 0.03425753279659773 + 0.17838064180238627im -1.2934446441704534e-6 - 7.846002110727935e-7im; -0.10673694768415062 + 0.37704061203202344im 0.5697681974060806 + 0.24641716233953564im … -0.15064957929393305 - 0.10210850118944058im 5.763238088312833e-7 - 1.2753578007603818e-7im; … ; 0.01156795349679657 - 0.006463425506981107im -9.350888687676867e-5 - 0.0002360301227840976im … -0.002460843875617397 - 0.012815225936315356im -0.026586399498671323 - 0.037659142859988746im; -0.01827483822466376 + 0.06455455527392302im -0.004876771349804122 - 0.002109138703988319im … -0.1186892793703638 - 0.08044952513746473im -0.4643777610705568 - 0.0800378491794189im]], n_bands_converge = 4, diagonalization = @NamedTuple{λ::Vector{Vector{Float64}}, X::Vector{Matrix{ComplexF64}}, residual_norms::Vector{Vector{Float64}}, n_iter::Vector{Int64}, converged::Bool, n_matvec::Int64}[(λ = [[-0.17836835653861277, 0.2624919449924716, 0.2624919449924719, 0.26249194499247214, 0.3546921481682021, 0.3546921481682028, 0.35469214820685097], [-0.12755037617842607, 0.06475320594756544, 0.2254516651750458, 0.2254516651750461, 0.32197764961201275, 0.3892227690853713, 0.38922276908537207], [-0.1081872921643139, 0.07755003473528492, 0.17278328011546254, 0.17278328011546273, 0.2843518536202367, 0.3305476484334571, 0.5267232426410015], [-0.057773253743509376, 0.012724782206357832, 0.09766073750183164, 0.18417825333050863, 0.31522841796032947, 0.4720312182259224, 0.4979135175663154]], X = [[-0.9269285237936421 - 0.20617274069436362im -8.609011072341882e-14 + 7.0396680774101734e-15im … -2.4529152612109613e-13 + 1.3398853208943886e-13im -1.632208235480016e-7 + 4.911444413322297e-8im; -0.08383224894008455 + 0.053324958790160616im 0.02974059290862793 + 0.24060955122184455im … 0.0076152166790702846 - 0.42835963333646376im -0.17642367321150232 + 0.03850947497710801im; … ; 0.011477580990428324 + 0.002552909170980043im -0.016449312762646863 - 0.029561668677687843im … -0.029280775709886322 + 0.03863005367344602im -0.019708881061995358 + 0.03999719135323206im; -0.08383224894000572 + 0.05332495879011761im -0.3262831597995255 - 0.32511919564100067im … 0.0630723595030198 - 0.025532743516197703im -0.05607583969350533 + 0.3926703410757267im], [0.8284738008839745 - 0.4028768518926031im -0.056833156703912424 + 0.19491414514004005im … -1.2726103445461488e-11 + 1.5933260845753905e-10im -6.280982521420073e-12 - 1.4646680589811807e-10im; 0.02043374283881948 - 0.05911955582128507im -0.004332612458611616 - 0.007899157651920246im … 6.109288488843735e-10 + 7.798321664001384e-10im -8.812820077198972e-10 - 5.830245536449933e-10im; … ; -0.00444461123631117 + 0.0021613610242207705im 0.023664372970971174 - 0.081158979993491im … -0.10222223086912614 - 0.010420131781664316im 0.004177602704919156 + 0.023096280944219123im; 0.03819208309026022 - 0.11049855163568091im 0.048147965944861024 + 0.08778268937073153im … -0.35220292638810974 + 0.2870409248623561im 0.0852782329635576 + 0.05915371163038528im], [-0.13592401458584585 - 0.9154978561564844im 8.324400131519432e-15 - 1.5992172820428045e-14im … -2.0973843505666496e-12 - 2.950087011301559e-12im -3.2930255995339334e-9 - 3.422754117329875e-9im; -0.055052152316826496 - 0.04081826625707345im -0.042438065345719214 + 0.030389084399806667im … 0.003524386672123521 - 0.0257204271982922im 0.0004325811658267789 - 0.0033150652787208297im; … ; 0.001555966148220489 + 0.010480000000545879im -1.6496198505018082e-14 - 4.3016457576015356e-14im … 9.506376826798851e-11 + 3.408787442054711e-12im -0.02739216166381923 + 0.04697738377835475im; -0.12871943018393184 - 0.09543866592999216im 0.2384177594110352 - 0.170726383355963im … 0.05051488460383612 - 0.36864979264206754im 0.040053943510444535 + 0.1504239947787522im], [-0.6977911314634214 + 0.38988063004549656im 4.6702287853436495e-15 + 6.6846504012365854e-15im … 0.03425753279659773 + 0.17838064180238627im -1.2934446441704534e-6 - 7.846002110727935e-7im; -0.10673694768415062 + 0.37704061203202344im 0.5697681974060806 + 0.24641716233953564im … -0.15064957929393305 - 0.10210850118944058im 5.763238088312833e-7 - 1.2753578007603818e-7im; … ; 0.01156795349679657 - 0.006463425506981107im -9.350888687676867e-5 - 0.0002360301227840976im … -0.002460843875617397 - 0.012815225936315356im -0.026586399498671323 - 0.037659142859988746im; -0.01827483822466376 + 0.06455455527392302im -0.004876771349804122 - 0.002109138703988319im … -0.1186892793703638 - 0.08044952513746473im -0.4643777610705568 - 0.0800378491794189im]], residual_norms = [[0.0, 0.0, 4.0993937012266584e-12, 5.913491293052825e-12, 1.3775769700957396e-11, 7.458518284578324e-12, 5.5770868262814265e-6], [4.094874087411191e-12, 6.100731546233203e-12, 4.915541801163813e-12, 5.04618100398983e-12, 6.023585336711714e-10, 4.488127135739096e-9, 4.027245248349935e-9], [4.101094332685317e-12, 5.138473768554714e-12, 5.327303255101025e-12, 8.581643830610578e-12, 3.5211458615261116e-11, 1.0172948758388968e-9, 1.1682705623038075e-6], [0.0, 0.0, 0.0, 5.934584605036251e-12, 8.377858250905208e-11, 6.669302767259257e-6, 3.104085167110336e-6]], n_iter = [4, 2, 2, 3], converged = 1, n_matvec = 99)], stage = :finalize, algorithm = "SCF", history_Δρ = [0.21069596411560815, 0.027614723665633313, 0.002307794301946218, 0.00025578719528612825, 9.663689435656433e-6, 9.317186165549415e-7, 3.615318028767438e-8, 2.204841502702811e-9, 3.4985730383138964e-10, 6.876178534459952e-11], history_Etot = [-7.9052605378103, -7.910544404740857, -7.910593462106034, -7.910594393316613, -7.91059439644417, -7.910594396488415, -7.910594396488504, -7.910594396488504, -7.910594396488506, -7.910594396488505], occupation_threshold = 1.0e-6, seed = 0xe9eeea4d5b787dbf, runtime_ns = 0x0000000080f44534)