Hubbard correction (DFT+U)

In this example, we'll plot the DOS and projected DOS of Nickel Oxide with and without the Hubbard term correction.

using DFTK
using PseudoPotentialData
using Unitful
using UnitfulAtomic
using Plots

Define the geometry and pseudopotential

a = 7.9  # Nickel Oxide lattice constant in Bohr
lattice = a * [[ 1.0  0.5  0.5];
               [ 0.5  1.0  0.5];
               [ 0.5  0.5  1.0]]
pseudopotentials = PseudoFamily("dojo.nc.sr.pbe.v0_4_1.standard.upf")
Ni = ElementPsp(:Ni, pseudopotentials)
O  = ElementPsp(:O, pseudopotentials)
atoms = [Ni, O, Ni, O]
positions = [zeros(3), ones(3) / 4, ones(3) / 2, ones(3) * 3 / 4]
magnetic_moments = [2, 0, -1, 0]
4-element Vector{Int64}:
  2
  0
 -1
  0

First, we run an SCF and band computation without the Hubbard term

model = model_DFT(lattice, atoms, positions; temperature=5e-3,
                  functionals=PBE(), magnetic_moments)
basis = PlaneWaveBasis(model; Ecut=20, kgrid=[2, 2, 2])
scfres = self_consistent_field(basis; tol=1e-6, ρ=guess_density(basis, magnetic_moments))
bands = compute_bands(scfres, MonkhorstPack(4, 4, 4))
lowest_unocc_band = findfirst(ε -> ε-bands.εF > 0, bands.eigenvalues[1])
band_gap = bands.eigenvalues[1][lowest_unocc_band] - bands.eigenvalues[1][lowest_unocc_band-1]
0.08219263372874136

Then we plot the DOS and the PDOS for the relevant 3D (pseudo)atomic projector

εF = bands.εF
width = 5.0u"eV"
εrange = (εF - austrip(width), εF + austrip(width))
p = plot_dos(bands; εrange, colors=[:red, :red])
plot_pdos(bands; p, iatom=1, label="3D", colors=[:yellow, :orange], εrange)
Example block output

To perform and Hubbard computation, we have to define the Hubbard manifold and associated constant.

In DFTK there are a few ways to construct the OrbitalManifold. Here, we will apply the Hubbard correction on the 3D orbital of all nickel atoms. To select all nickel atoms, we can:

  • Pass the Ni element directly.
  • Pass the :Ni symbol.
  • Pass the list of atom indices, here [1, 3].

To select the orbitals, it is recommended to use their label, such as "3D" for PseudoDojo pseudopotentials.

Note that "manifold" is the standard term used in the literature for the set of atomic orbitals used to compute the Hubbard correction, but it is not meant in the mathematical sense.

U = 10u"eV"
# Alternative:
# manifold = OrbitalManifold(:Ni, "3D")
# Alternative:
# manifold = OrbitalManifold([1, 3], "3D")
manifold = OrbitalManifold(Ni, "3D")
OrbitalManifold(Ni, "3D")

Run SCF with a DFT+U setup, notice the extra_terms keyword argument, setting up the Hubbard +U term.

model = model_DFT(lattice, atoms, positions; extra_terms=[Hubbard(manifold, U)],
                  functionals=PBE(), temperature=5e-3, magnetic_moments)
basis = PlaneWaveBasis(model; Ecut=20, kgrid=[2, 2, 2])
scfres = self_consistent_field(basis; tol=1e-6, ρ=guess_density(basis, magnetic_moments));
┌ Warning: Negative ρcore detected: -0.0006182370306135084
@ DFTK ~/work/DFTK.jl/DFTK.jl/src/terms/xc.jl:39
n     Energy            log10(ΔE)   log10(Δρ)   Magnet   |Magn|   Diag   Δtime
---   ---------------   ---------   ---------   ------   ------   ----   ------
  1   -361.3856815546                    0.07    1.334    3.442    7.0    3.75s
  2   -363.2386087041        0.27       -0.21    0.014    3.625    3.4    4.82s
  3   -363.3509789255       -0.95       -0.58    0.000    3.727    3.4    2.94s
  4   -363.3890173856       -1.42       -1.18    0.000    3.717    2.6    2.46s
  5   -363.3959764395       -2.16       -1.67    0.000    3.681    2.0    2.24s
  6   -363.3973163814       -2.87       -2.04    0.000    3.656    1.5    1.93s
  7   -363.3976086969       -3.53       -2.28    0.000    3.648    2.2    2.16s
  8   -363.3976907286       -4.09       -2.62    0.000    3.647    1.5    1.97s
  9   -363.3977068317       -4.79       -2.99    0.000    3.649    2.1    2.20s
 10   -363.3977062139   +   -6.21       -2.93   -0.000    3.649    2.2    2.06s
 11   -363.3977093255       -5.51       -3.19    0.000    3.648    2.0    2.11s
 12   -363.3977086775   +   -6.19       -3.15    0.000    3.648    2.1    2.12s
 13   -363.3977089884       -6.51       -3.12   -0.000    3.648    2.0    2.14s
 14   -363.3977085273   +   -6.34       -2.99   -0.000    3.648    1.0    1.77s
 15   -363.3977090557       -6.28       -2.98   -0.000    3.649    1.0    1.77s
 16   -363.3977093809       -6.49       -3.10   -0.000    3.649    1.0    1.77s
 17   -363.3977095841       -6.69       -3.13   -0.000    3.649    1.0    1.77s
 18   -363.3977097818       -6.70       -3.24    0.000    3.649    1.0    1.77s
 19   -363.3977099012       -6.92       -3.38    0.000    3.648    1.0    1.74s
 20   -363.3977099422       -7.39       -3.44    0.000    3.648    1.0    1.68s
 21   -363.3977099862       -7.36       -3.56    0.000    3.648    1.0    2.90s
 22   -363.3977100143       -7.55       -4.19    0.000    3.648    1.2    1.68s
 23   -363.3977100138   +   -9.30       -4.24    0.000    3.648    2.2    2.02s
 24   -363.3977100126   +   -8.91       -4.22    0.000    3.648    1.1    1.69s
 25   -363.3977099997   +   -7.89       -4.05    0.000    3.648    1.8    1.86s
 26   -363.3977099952   +   -8.35       -4.06    0.000    3.648    1.0    1.68s
 27   -363.3977099926   +   -8.59       -4.04    0.000    3.648    1.0    1.68s
 28   -363.3977099957       -8.51       -4.05    0.000    3.648    1.0    1.67s
 29   -363.3977100033       -8.12       -4.00    0.000    3.648    1.0    1.68s
 30   -363.3977100054       -8.66       -4.05    0.000    3.648    1.0    1.68s
 31   -363.3977100121       -8.18       -4.30    0.000    3.648    1.0    1.67s
 32   -363.3977100163       -8.37       -4.61    0.000    3.648    1.2    1.71s
 33   -363.3977100169       -9.24       -4.69    0.000    3.648    1.2    1.70s
 34   -363.3977100177       -9.11       -4.80    0.000    3.648    1.9    1.86s
 35   -363.3977100178       -9.86       -5.54    0.000    3.648    1.2    1.71s
 36   -363.3977100178      -10.59       -5.91    0.000    3.648    3.1    2.30s
 37   -363.3977100178      -11.33       -6.03    0.000    3.648    2.0    1.82s

Run band computation

bands_hub = compute_bands(scfres, MonkhorstPack(4, 4, 4))
lowest_unocc_band = findfirst(ε -> ε-bands_hub.εF > 0, bands_hub.eigenvalues[1])
band_gap = bands_hub.eigenvalues[1][lowest_unocc_band] - bands_hub.eigenvalues[1][lowest_unocc_band-1]
0.1166760235072059

With the electron localization introduced by the Hubbard term, the band gap has now opened, reflecting the experimental insulating behaviour of Nickel Oxide.

εF = bands_hub.εF
εrange = (εF - austrip(width), εF + austrip(width))
p = plot_dos(bands_hub; p, colors=[:blue, :blue], εrange)
plot_pdos(bands_hub; p, iatom=1, label="3D", colors=[:green, :purple], εrange)
Example block output