Comparison of DFT solvers

We compare four different approaches for solving the DFT minimisation problem, namely a density-based SCF, a potential-based SCF, direct minimisation and Newton.

First we setup our problem

using AtomsBuilder
using DFTK
using LinearAlgebra
using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.pbesol.v0_4_1.standard.upf")
model = model_DFT(bulk(:Si); functionals=PBEsol(), pseudopotentials)
basis = PlaneWaveBasis(model; Ecut=5, kgrid=[3, 3, 3])

# Convergence we desire in the density
tol = 1e-6
1.0e-6

Density-based self-consistent field

scfres_scf = self_consistent_field(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -8.397823282473                   -0.90    5.0   27.1ms
  2   -8.400246991447       -2.62       -1.73    1.0   30.6ms
  3   -8.400398717033       -3.82       -2.90    1.5   20.4ms
  4   -8.400427783043       -4.54       -2.90    3.0   25.3ms
  5   -8.400427938664       -6.81       -3.01    1.0   19.6ms
  6   -8.400428149377       -6.68       -4.76    1.0   26.1ms
  7   -8.400428155842       -8.19       -4.41    3.0   25.9ms
  8   -8.400428156259       -9.38       -5.27    1.0   19.7ms
  9   -8.400428156275      -10.80       -6.28    1.0   19.6ms

Potential-based SCF

scfres_scfv = DFTK.scf_potential_mixing(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   α      Diag   Δtime
---   ---------------   ---------   ---------   ----   ----   ------
  1   -8.397780067398                   -0.90           5.0   27.4ms
  2   -8.400384598445       -2.58       -1.79   0.80    2.2   25.9ms
  3   -8.400423032705       -4.42       -3.02   0.80    1.0   22.4ms
  4   -8.400428112098       -5.29       -3.41   0.80    2.8   29.3ms
  5   -8.400428154513       -7.37       -4.43   0.80    1.5   18.5ms
  6   -8.400428156194       -8.77       -5.57   0.80    2.0   27.4ms
  7   -8.400428156276      -10.08       -6.10   0.80    2.5   21.7ms

Direct minimization

scfres_dm = direct_minimization(basis; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Δtime
---   ---------------   ---------   ---------   ------
  1   +1.170147278802                   -0.99   52.5ms
  2   -1.408260481398        0.41       -0.65   29.7ms
  3   -3.859164187223        0.39       -0.34   46.4ms
  4   -4.726920549268       -0.06       -0.37   40.4ms
  5   -6.965936136752        0.35       -0.44   45.6ms
  6   -7.785622452166       -0.09       -0.85   39.8ms
  7   -8.131002673265       -0.46       -1.23   29.2ms
  8   -8.244219803286       -0.95       -1.51   29.5ms
  9   -8.330581993500       -1.06       -1.70   35.3ms
 10   -8.364604586949       -1.47       -2.14   29.6ms
 11   -8.382858660496       -1.74       -2.15   29.5ms
 12   -8.388365750008       -2.26       -2.43   29.3ms
 13   -8.392875411500       -2.35       -3.07   35.0ms
 14   -8.396460177440       -2.45       -2.91   29.6ms
 15   -8.398684564435       -2.65       -2.91   29.8ms
 16   -8.399341940360       -3.18       -3.32   30.4ms
 17   -8.399942065139       -3.22       -3.33   29.8ms
 18   -8.400164818743       -3.65       -3.34   36.1ms
 19   -8.400323687737       -3.80       -3.66   29.8ms
 20   -8.400385292745       -4.21       -3.73   29.7ms
 21   -8.400411933313       -4.57       -3.98   29.8ms
 22   -8.400420084299       -5.09       -3.88   35.1ms
 23   -8.400424108507       -5.40       -4.17   30.0ms
 24   -8.400425568807       -5.84       -4.23   32.5ms
 25   -8.400427188636       -5.79       -4.32   30.2ms
 26   -8.400427867257       -6.17       -4.74   36.0ms
 27   -8.400427998822       -6.88       -5.06   29.9ms
 28   -8.400428073397       -7.13       -5.00   29.7ms
 29   -8.400428110685       -7.43       -6.19   30.4ms

Newton algorithm

Start not too far from the solution to ensure convergence: We run first a very crude SCF to get close and then switch to Newton.

scfres_start = self_consistent_field(basis; tol=0.5);
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -8.397791071625                   -0.90    5.2   27.8ms

Remove the virtual orbitals (which Newton cannot treat yet)

ψ = DFTK.select_occupied_orbitals(basis, scfres_start.ψ, scfres_start.occupation).ψ
scfres_newton = newton(basis, ψ; tol);
n     Energy            log10(ΔE)   log10(Δρ)   Δtime
---   ---------------   ---------   ---------   ------
  1   -8.400427985670                   -1.79    558ms
  2   -8.400428156277       -6.77       -4.03    403ms
  3   -8.400428156277      -14.45       -7.83    115ms

Comparison of results

println("|ρ_newton - ρ_scf|  = ", norm(scfres_newton.ρ - scfres_scf.ρ))
println("|ρ_newton - ρ_scfv| = ", norm(scfres_newton.ρ - scfres_scfv.ρ))
println("|ρ_newton - ρ_dm|   = ", norm(scfres_newton.ρ - scfres_dm.ρ))
|ρ_newton - ρ_scf|  = 1.6082831575002699e-6
|ρ_newton - ρ_scfv| = 1.4561100317111284e-7
|ρ_newton - ρ_dm|   = 1.2709707668745447e-5