Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73283658161                   -0.88   12.0    388ms
  2   -36.65325604863   +   -1.10       -1.42    1.0   92.0ms
  3   +27.19429573113   +    1.81       -0.16    7.0    235ms
  4   -36.17594804254        1.80       -0.99    7.0    249ms
  5   -33.58164405801   +    0.41       -0.80    4.0    169ms
  6   -36.44641860560        0.46       -1.27    4.0    169ms
  7   -36.70558162824       -0.59       -1.63    3.0    131ms
  8   -36.73720999520       -1.50       -1.97    2.0    113ms
  9   -36.73557089660   +   -2.79       -1.96    2.0    120ms
 10   -36.73982771993       -2.37       -2.04    2.0    113ms
 11   -36.74227153896       -2.61       -2.41    1.0    103ms
 12   -36.74132341511   +   -3.02       -2.34    3.0    147ms
 13   -36.74232816713       -3.00       -2.71    1.0    105ms
 14   -36.74231917484   +   -5.05       -2.70    3.0    139ms
 15   -36.74142958478   +   -3.05       -2.52    3.0    127ms
 16   -36.74244976764       -2.99       -3.09    2.0    132ms
 17   -36.73616277783   +   -2.20       -2.15    4.0    188ms
 18   -36.74246464714       -2.20       -3.32    4.0    173ms
 19   -36.74246428316   +   -6.44       -3.36    2.0    116ms
 20   -36.74247469617       -4.98       -3.62    3.0    130ms
 21   -36.74247920436       -5.35       -3.77    2.0    111ms
 22   -36.74248061300       -5.85       -4.33    2.0    139ms
 23   -36.74247981408   +   -6.10       -4.02    3.0    147ms
 24   -36.74248061957       -6.09       -4.52    3.0    140ms
 25   -36.74248043540   +   -6.73       -4.17    3.0    153ms
 26   -36.74248065880       -6.65       -4.78    2.0    138ms
 27   -36.74248065291   +   -8.23       -4.85    2.0    117ms
 28   -36.74248066694       -7.85       -5.04    2.0    115ms
 29   -36.74248034598   +   -6.49       -4.29    4.0    161ms
 30   -36.74248067170       -6.49       -5.36    4.0    168ms
 31   -36.74248067109   +   -9.22       -5.31    3.0    139ms
 32   -36.74248067222       -8.94       -5.69    2.0    114ms
 33   -36.74248067244       -9.68       -5.71    3.0    145ms
 34   -36.74248067255       -9.93       -5.94    1.0   98.9ms
 35   -36.74248067074   +   -8.74       -5.41    4.0    167ms
 36   -36.74248067267       -8.72       -6.34    3.0    144ms
 37   -36.74248067267      -12.08       -6.35    2.0    138ms
 38   -36.74248067268      -10.88       -6.81    1.0    100ms
 39   -36.74248067268   +  -12.01       -6.86    3.0    134ms
 40   -36.74248067268      -11.84       -7.06    3.0    125ms
 41   -36.74248067268      -12.44       -7.20    2.0    141ms
 42   -36.74248067268      -12.47       -7.60    2.0    117ms
 43   -36.74248067268   +  -12.46       -7.16    3.0    152ms
 44   -36.74248067268      -12.47       -7.56    3.0    148ms
 45   -36.74248067268      -14.15       -7.47    2.0    136ms
 46   -36.74248067268      -13.55       -8.09    2.0    116ms
 47   -36.74248067268   +  -14.15       -7.83    3.0    155ms
 48   -36.74248067268      -13.85       -8.31    3.0    146ms
 49   -36.74248067268      -13.85       -8.60    1.0    100ms
 50   -36.74248067268   +  -14.15       -8.76    2.0    143ms
 51   -36.74248067268   +    -Inf       -8.87    2.0    130ms
 52   -36.74248067268      -14.15       -8.74    3.0    132ms
 53   -36.74248067268   +  -14.15       -9.04    2.0    111ms
 54   -36.74248067268   +    -Inf       -9.08    3.0    150ms
 55   -36.74248067268   +  -14.15       -9.50    2.0    117ms
 56   -36.74248067268      -14.15       -9.74    2.0    141ms
 57   -36.74248067268      -14.15       -9.55    3.0    159ms
 58   -36.74248067268   +  -14.15      -10.24    2.0    118ms
 59   -36.74248067268   +  -13.85       -9.75    3.0    154ms
 60   -36.74248067268      -13.55       -9.97    3.0    149ms
 61   -36.74248067268   +  -13.85      -10.32    2.0    117ms
 62   -36.74248067268      -14.15      -10.72    2.0    131ms
 63   -36.74248067268   +  -14.15      -11.06    2.0    136ms
 64   -36.74248067268   +  -14.15      -11.29    2.0    117ms
 65   -36.74248067268      -13.67      -11.24    2.0    140ms
 66   -36.74248067268   +  -13.85      -11.34    2.0    128ms
 67   -36.74248067268      -13.85      -11.15    3.0    140ms
 68   -36.74248067268   +  -13.85      -11.43    3.0    135ms
 69   -36.74248067268   +    -Inf      -11.94    2.0    116ms
 70   -36.74248067268   +  -14.15      -12.04    3.0    148ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73277580366                   -0.88   12.0    367ms
  2   -36.73997639692       -2.14       -1.36    1.0   98.2ms
  3   -36.73973460955   +   -3.62       -1.69    5.0    135ms
  4   -36.74198578349       -2.65       -2.06    1.0   94.0ms
  5   -36.74235417469       -3.43       -2.61    2.0    127ms
  6   -36.74242512810       -4.15       -2.67    3.0    137ms
  7   -36.74246434571       -4.41       -2.91    1.0    101ms
  8   -36.74247689209       -4.90       -3.36    4.0    114ms
  9   -36.74247965589       -5.56       -3.49    3.0    143ms
 10   -36.74248052539       -6.06       -3.96    1.0   98.8ms
 11   -36.74248063281       -6.97       -4.40    4.0    118ms
 12   -36.74248060254   +   -7.52       -4.54    3.0    141ms
 13   -36.74248067167       -7.16       -5.13    2.0    109ms
 14   -36.74248067253       -9.07       -5.57    3.0    149ms
 15   -36.74248067258      -10.23       -5.64    3.0    123ms
 16   -36.74248067265      -10.21       -5.98    2.0    110ms
 17   -36.74248067266      -10.81       -6.30    3.0    140ms
 18   -36.74248067268      -10.80       -6.49    1.0    104ms
 19   -36.74248067268   +  -12.10       -6.69    2.0    125ms
 20   -36.74248067268      -11.31       -7.50    2.0    139ms
 21   -36.74248067268   +  -13.00       -7.43    5.0    171ms
 22   -36.74248067268      -12.97       -8.08    2.0    115ms
 23   -36.74248067268      -14.15       -8.42    2.0    139ms
 24   -36.74248067268   +  -14.15       -8.59    2.0    110ms
 25   -36.74248067268   +    -Inf       -8.91    1.0   98.3ms
 26   -36.74248067268   +    -Inf       -9.19    2.0    139ms
 27   -36.74248067268   +    -Inf       -9.59    2.0    105ms
 28   -36.74248067268   +    -Inf      -10.02    4.0    136ms
 29   -36.74248067268   +  -13.85      -10.00    3.0    145ms
 30   -36.74248067268      -13.67      -10.58    2.0    120ms
 31   -36.74248067268   +  -14.15      -10.46    3.0    158ms
 32   -36.74248067268   +    -Inf      -10.81    1.0    105ms
 33   -36.74248067268   +    -Inf      -11.47    2.0    117ms
 34   -36.74248067268   +    -Inf      -11.32    3.0    167ms
 35   -36.74248067268      -14.15      -11.78    2.0    105ms
 36   -36.74248067268   +    -Inf      -12.19    3.0    131ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448898025313

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.24421111371127

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.7235936329219035

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).