Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73353772120                   -0.88   11.0    366ms
  2   -36.56843886683   +   -0.78       -1.37    1.0   90.8ms
┌ Warning: Eigensolver not converged
  n_iter =
   1-element Vector{Int64}:
    25
@ DFTK ~/work/DFTK.jl/DFTK.jl/src/scf/self_consistent_field.jl:80
  3   +57.53981112654   +    1.97       -0.07   25.0    370ms
  4   -35.78533753727        1.97       -0.93    9.0    296ms
  5   -32.53726523139   +    0.51       -0.74    4.0    178ms
  6   -36.03089790688        0.54       -1.09    4.0    170ms
  7   -36.68727972633       -0.18       -1.55    4.0    158ms
  8   -36.74034581706       -1.28       -2.01    2.0    104ms
  9   -36.73903212481   +   -2.88       -1.93    2.0    133ms
 10   -36.74119891035       -2.66       -2.15    2.0    123ms
 11   -36.73981824947   +   -2.86       -2.13    2.0    120ms
 12   -36.74182568047       -2.70       -2.44    1.0    103ms
 13   -36.74227957692       -3.34       -2.65    1.0   97.0ms
 14   -36.74236918579       -4.05       -2.75    3.0    120ms
 15   -36.73799799044   +   -2.36       -2.22    3.0    141ms
 16   -36.73588752502   +   -2.68       -2.13    3.0    155ms
 17   -36.73159084097   +   -2.37       -2.03    4.0    168ms
 18   -36.74228755233       -1.97       -2.82    3.0    159ms
 19   -36.74104365253   +   -2.91       -2.44    3.0    141ms
 20   -36.74247021911       -2.85       -3.28    3.0    145ms
 21   -36.74247606384       -5.23       -3.30    2.0    137ms
 22   -36.74247723428       -5.93       -3.73    1.0   97.4ms
 23   -36.74247403319   +   -5.49       -3.35    3.0    148ms
 24   -36.74248055776       -5.19       -4.21    2.0    131ms
 25   -36.74248065253       -7.02       -4.36    2.0    110ms
 26   -36.74248064358   +   -8.05       -4.60    2.0    111ms
 27   -36.74248064655       -8.53       -4.76    2.0    132ms
 28   -36.74248062034   +   -7.58       -4.68    3.0    129ms
 29   -36.74248063511       -7.83       -4.69    3.0    132ms
 30   -36.74248064890       -7.86       -4.86    2.0    119ms
 31   -36.74248067140       -7.65       -5.47    2.0    106ms
 32   -36.74248066821   +   -8.50       -5.20    4.0    166ms
 33   -36.74248067204       -8.42       -5.60    3.0    140ms
 34   -36.74248067257       -9.28       -5.90    2.0    119ms
 35   -36.74248067262      -10.29       -5.81    2.0    124ms
 36   -36.74248067267      -10.29       -6.27    2.0    118ms
 37   -36.74248067268      -11.18       -6.42    2.0    133ms
 38   -36.74248067267   +  -12.04       -6.49    1.0    102ms
 39   -36.74248067268      -11.16       -6.72    2.0    114ms
 40   -36.74248067268   +  -11.23       -6.60    3.0    128ms
 41   -36.74248067268      -11.64       -6.63    3.0    130ms
 42   -36.74248067268      -11.55       -6.78    2.0    117ms
 43   -36.74248067268      -11.83       -7.50    1.0   95.9ms
 44   -36.74248067268   +  -12.56       -7.18    3.0    158ms
 45   -36.74248067268      -12.83       -7.36    3.0    140ms
 46   -36.74248067268      -12.97       -7.55    2.0    118ms
 47   -36.74248067268      -13.19       -7.56    2.0    124ms
 48   -36.74248067268      -13.67       -8.00    1.0   97.3ms
 49   -36.74248067268   +    -Inf       -8.08    2.0    138ms
 50   -36.74248067268   +  -13.85       -7.85    2.0    124ms
 51   -36.74248067268      -13.85       -8.64    3.0    131ms
 52   -36.74248067268   +  -14.15       -8.86    3.0    142ms
 53   -36.74248067268      -13.67       -8.80    3.0    148ms
 54   -36.74248067268   +  -14.15       -8.95    2.0    114ms
 55   -36.74248067268   +    -Inf       -9.34    2.0    110ms
 56   -36.74248067268   +  -14.15       -9.40    3.0    134ms
 57   -36.74248067268   +  -14.15       -8.87    3.0    146ms
 58   -36.74248067268      -13.85       -9.23    3.0    141ms
 59   -36.74248067268   +  -14.15      -10.00    2.0    143ms
 60   -36.74248067268   +    -Inf       -9.75    3.0    149ms
 61   -36.74248067268      -14.15      -10.14    2.0    119ms
 62   -36.74248067268   +  -14.15      -10.07    2.0    113ms
 63   -36.74248067268   +    -Inf      -10.46    1.0    103ms
 64   -36.74248067268   +    -Inf       -9.97    3.0    151ms
 65   -36.74248067268   +    -Inf      -10.85    3.0    150ms
 66   -36.74248067268   +    -Inf      -11.28    2.0    105ms
 67   -36.74248067268   +    -Inf      -11.29    2.0    138ms
 68   -36.74248067268   +    -Inf      -11.37    2.0    114ms
 69   -36.74248067268      -13.85      -11.51    2.0    113ms
 70   -36.74248067268   +  -14.15      -11.94    2.0    108ms
 71   -36.74248067268   +  -14.15      -11.94    3.0    149ms
 72   -36.74248067268      -14.15      -11.60    3.0    146ms
 73   -36.74248067268   +  -14.15      -11.78    3.0    144ms
 74   -36.74248067268   +  -14.15      -12.23    1.0   97.2ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73272568765                   -0.88   11.0    360ms
  2   -36.73990368965       -2.14       -1.37    1.0   92.5ms
  3   -36.73962810277   +   -3.56       -1.66    3.0    127ms
  4   -36.74228930321       -2.57       -2.30    1.0   93.1ms
  5   -36.74240813912       -3.93       -2.52    6.0    155ms
  6   -36.74241052431       -5.62       -2.42    1.0   93.3ms
  7   -36.74247006169       -4.23       -2.97    1.0   98.1ms
  8   -36.74247749014       -5.13       -3.20    2.0    103ms
  9   -36.74247942423       -5.71       -3.51    2.0    109ms
 10   -36.74248057085       -5.94       -4.07    2.0    106ms
 11   -36.74248065835       -7.06       -4.45    3.0    145ms
 12   -36.74248066982       -7.94       -4.78    3.0    117ms
 13   -36.74248066999       -9.78       -5.11    3.0    142ms
 14   -36.74248067260       -8.58       -5.63    2.0    103ms
 15   -36.74248067265      -10.26       -5.91    3.0    147ms
 16   -36.74248067268      -10.63       -6.30    4.0    113ms
 17   -36.74248067268      -11.56       -6.55    3.0    130ms
 18   -36.74248067268      -12.07       -6.86    2.0    131ms
 19   -36.74248067268      -12.36       -7.29    2.0    108ms
 20   -36.74248067268      -13.45       -7.46    3.0    137ms
 21   -36.74248067268      -13.45       -7.87    2.0    111ms
 22   -36.74248067268   +  -14.15       -8.18    1.0   96.9ms
 23   -36.74248067268   +    -Inf       -8.68    3.0    126ms
 24   -36.74248067268      -13.85       -8.99    4.0    145ms
 25   -36.74248067268   +  -14.15       -9.10    5.0    124ms
 26   -36.74248067268   +    -Inf       -9.57    1.0   96.6ms
 27   -36.74248067268      -13.85       -9.70    3.0    144ms
 28   -36.74248067268   +    -Inf      -10.19    2.0    106ms
 29   -36.74248067268   +  -13.85      -10.36    2.0    137ms
 30   -36.74248067268      -14.15      -10.69    1.0   96.5ms
 31   -36.74248067268   +  -14.15      -11.10    2.0    112ms
 32   -36.74248067268   +    -Inf      -11.40    2.0    131ms
 33   -36.74248067268   +    -Inf      -11.53    3.0    123ms
 34   -36.74248067268   +  -14.15      -11.86    1.0   97.1ms
 35   -36.74248067268      -13.67      -12.24    3.0    142ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448930222839

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.24421145192058

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.7235805737320815

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).