Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73207104408                   -0.88   11.0    329ms
  2   -36.71853256641   +   -1.87       -1.59    1.0   88.4ms
  3   -9.743597454124   +    1.43       -0.35    7.0    192ms
  4   -36.53208899782        1.43       -1.15    6.0    182ms
  5   -36.32488383184   +   -0.68       -1.24    3.0    125ms
  6   -36.40557517805       -1.09       -1.29    5.0    154ms
  7   -36.72845708057       -0.49       -1.74    2.0    115ms
  8   -36.74146595893       -1.89       -2.19    2.0    104ms
  9   -36.73229405477   +   -2.04       -1.96    2.0    120ms
 10   -36.73917233251       -2.16       -1.97    3.0    129ms
 11   -36.74217032245       -2.52       -2.42    2.0    117ms
 12   -36.74241101710       -3.62       -2.70    2.0    109ms
 13   -36.74245360665       -4.37       -2.99    1.0   90.2ms
 14   -36.74247360390       -4.70       -3.22    2.0    103ms
 15   -36.74219278778   +   -3.55       -2.78    3.0    135ms
 16   -36.74223150004       -4.41       -2.79    4.0    146ms
 17   -36.74243041781       -3.70       -3.14    3.0    120ms
 18   -36.74244520183       -4.83       -3.25    3.0    122ms
 19   -36.74246384566       -4.73       -3.43    2.0    107ms
 20   -36.74245174710   +   -4.92       -3.33    3.0    126ms
 21   -36.74248013191       -4.55       -4.10    2.0    105ms
 22   -36.74248041388       -6.55       -4.14    3.0    140ms
 23   -36.74248034582   +   -7.17       -4.28    2.0    108ms
 24   -36.74248065486       -6.51       -4.66    2.0   99.0ms
 25   -36.74248065646       -8.80       -4.75    2.0    102ms
 26   -36.74248066821       -7.93       -4.91    2.0    108ms
 27   -36.74248066366   +   -8.34       -4.90    2.0    116ms
 28   -36.74248067146       -8.11       -5.36    1.0   90.0ms
 29   -36.74248065606   +   -7.81       -4.93    3.0    151ms
 30   -36.74248067210       -7.79       -5.63    3.0    132ms
 31   -36.74248067053   +   -8.80       -5.30    3.0    131ms
 32   -36.74248067266       -8.67       -6.13    3.0    124ms
 33   -36.74248067263   +  -10.58       -6.09    3.0    133ms
 34   -36.74248067253   +   -9.99       -5.91    3.0    126ms
 35   -36.74248067240   +   -9.88       -5.81    3.0    132ms
 36   -36.74248067266       -9.57       -6.38    3.0    129ms
 37   -36.74248067268      -10.75       -6.86    2.0    116ms
 38   -36.74248067268   +  -12.03       -6.86    2.0    134ms
 39   -36.74248067268      -11.68       -7.39    2.0    118ms
 40   -36.74248067268      -13.67       -7.56    3.0    141ms
 41   -36.74248067268   +  -12.64       -7.31    3.0    134ms
 42   -36.74248067268      -12.64       -7.83    3.0    137ms
 43   -36.74248067268      -13.85       -7.68    3.0    137ms
 44   -36.74248067268      -13.85       -8.10    2.0    113ms
 45   -36.74248067268   +  -13.85       -8.09    3.0    148ms
 46   -36.74248067268      -13.85       -8.51    1.0   97.9ms
 47   -36.74248067268   +    -Inf       -8.30    3.0    145ms
 48   -36.74248067268   +  -14.15       -8.60    2.0    113ms
 49   -36.74248067268      -14.15       -8.89    2.0    116ms
 50   -36.74248067268   +    -Inf       -8.58    3.0    147ms
 51   -36.74248067268   +  -14.15       -9.32    3.0    152ms
 52   -36.74248067268   +    -Inf       -9.48    2.0    125ms
 53   -36.74248067268      -14.15       -9.31    3.0    142ms
 54   -36.74248067268   +    -Inf       -9.20    3.0    139ms
 55   -36.74248067268      -14.15       -9.39    3.0    145ms
 56   -36.74248067268   +  -13.85       -9.85    2.0    105ms
 57   -36.74248067268      -14.15       -9.89    3.0    145ms
 58   -36.74248067268   +    -Inf       -9.76    2.0    129ms
 59   -36.74248067268   +    -Inf       -9.95    2.0    117ms
 60   -36.74248067268   +    -Inf      -10.05    2.0    119ms
 61   -36.74248067268   +  -14.15      -10.57    1.0   98.6ms
 62   -36.74248067268   +    -Inf      -10.57    3.0    143ms
 63   -36.74248067268      -14.15      -10.75    2.0    116ms
 64   -36.74248067268   +  -13.85      -10.95    1.0   98.3ms
 65   -36.74248067268      -13.85      -10.86    3.0    140ms
 66   -36.74248067268   +  -13.85      -11.15    2.0    113ms
 67   -36.74248067268      -13.85      -11.02    3.0    136ms
 68   -36.74248067268   +  -14.15      -11.58    2.0    116ms
 69   -36.74248067268      -14.15      -11.05    3.0    151ms
 70   -36.74248067268   +    -Inf      -11.29    3.0    156ms
 71   -36.74248067268   +  -14.15      -11.51    2.0    127ms
 72   -36.74248067268   +    -Inf      -12.14    2.0    118ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73240620110                   -0.88   11.0    377ms
  2   -36.73980129374       -2.13       -1.36    1.0   93.5ms
  3   -36.74070509400       -3.04       -1.83    6.0    132ms
  4   -36.74198850438       -2.89       -2.04    2.0    121ms
  5   -36.74241950692       -3.37       -2.61    1.0   97.6ms
  6   -36.74246153737       -4.38       -2.71    2.0    129ms
  7   -36.74247334098       -4.93       -2.90    1.0   97.4ms
  8   -36.74247978412       -5.19       -3.56    1.0   98.8ms
  9   -36.74247954799   +   -6.63       -3.36    8.0    169ms
 10   -36.74248043660       -6.05       -3.76    1.0   94.3ms
 11   -36.74248064241       -6.69       -4.28    1.0    100ms
 12   -36.74248066326       -7.68       -4.57    3.0    140ms
 13   -36.74248067118       -8.10       -4.79    2.0    139ms
 14   -36.74248066963   +   -8.81       -5.14    1.0   96.2ms
 15   -36.74248067261       -8.53       -5.54    2.0    119ms
 16   -36.74248067267      -10.19       -5.80    3.0    142ms
 17   -36.74248067267   +  -12.64       -5.95    2.0    103ms
 18   -36.74248067268      -10.95       -6.23    2.0    118ms
 19   -36.74248067268      -11.90       -6.64    2.0    107ms
 20   -36.74248067268      -12.59       -7.06    4.0    141ms
 21   -36.74248067268      -13.30       -7.38    3.0    143ms
 22   -36.74248067268      -13.55       -7.76    2.0    103ms
 23   -36.74248067268   +  -13.85       -7.87    3.0    144ms
 24   -36.74248067268      -13.67       -8.45    2.0    107ms
 25   -36.74248067268   +  -13.85       -8.43    3.0    147ms
 26   -36.74248067268      -14.15       -8.82    2.0    103ms
 27   -36.74248067268      -14.15       -9.06    2.0    138ms
 28   -36.74248067268   +  -14.15       -9.58    1.0   99.5ms
 29   -36.74248067268      -14.15       -9.66    3.0    146ms
 30   -36.74248067268   +    -Inf       -9.93    1.0   96.3ms
 31   -36.74248067268   +    -Inf      -10.24    2.0    116ms
 32   -36.74248067268   +    -Inf      -10.57    2.0    136ms
 33   -36.74248067268   +  -13.85      -10.89    2.0    117ms
 34   -36.74248067268      -13.85      -11.28    2.0    104ms
 35   -36.74248067268   +  -13.85      -11.39    3.0    146ms
 36   -36.74248067268      -13.85      -11.55    2.0    106ms
 37   -36.74248067268   +    -Inf      -11.89    1.0   99.2ms
 38   -36.74248067268   +    -Inf      -11.87    3.0    133ms
 39   -36.74248067268   +    -Inf      -12.14    1.0    101ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448898023324

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244211113690376

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723584343543123

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).