Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73368191907                   -0.88   14.0    378ms
  2   -36.63185699033   +   -0.99       -1.40    1.0   94.1ms
  3   +33.75519766980   +    1.85       -0.14    7.0    222ms
  4   -35.87217235891        1.84       -0.85    7.0    333ms
  5   -36.25964486154       -0.41       -1.13    3.0    143ms
  6   -33.01373080309   +    0.51       -0.78    6.0    1.24s
  7   -36.73847730626        0.57       -1.82    4.0    151ms
  8   -36.73913901434       -3.18       -1.85    2.0    126ms
  9   -36.73614787705   +   -2.52       -1.98    2.0    104ms
 10   -36.74091487923       -2.32       -2.17    2.0   98.5ms
 11   -36.74230755218       -2.86       -2.42    2.0    101ms
 12   -36.74183028902   +   -3.32       -2.50    2.0    108ms
 13   -36.74237729043       -3.26       -2.72    1.0    100ms
 14   -36.74241429730       -4.43       -2.77    2.0    103ms
 15   -36.73461784103   +   -2.11       -2.11    3.0    135ms
 16   -36.74154122446       -2.16       -2.44    4.0    162ms
 17   -36.74191042673       -3.43       -2.67    2.0    121ms
 18   -36.72721642935   +   -1.83       -1.97    3.0    150ms
 19   -36.74246399288       -1.82       -3.24    4.0    149ms
 20   -36.74245487247   +   -5.04       -2.98    2.0    127ms
 21   -36.74246994783       -4.82       -3.40    2.0    126ms
 22   -36.74247843728       -5.07       -3.69    1.0   94.0ms
 23   -36.74247799867   +   -6.36       -3.82    3.0    136ms
 24   -36.74247997667       -5.70       -4.07    2.0    115ms
 25   -36.74248041021       -6.36       -4.20    3.0    127ms
 26   -36.74248058330       -6.76       -4.32    1.0    100ms
 27   -36.74248060047       -7.77       -4.60    2.0    105ms
 28   -36.74248066649       -7.18       -4.89    2.0    135ms
 29   -36.74248066607   +   -9.37       -5.05    2.0    112ms
 30   -36.74248048907   +   -6.75       -4.41    3.0    154ms
 31   -36.74248067202       -6.74       -5.53    4.0    154ms
 32   -36.74248066957   +   -8.61       -5.20    3.0    150ms
 33   -36.74248067248       -8.54       -5.83    3.0    126ms
 34   -36.74248067250      -10.78       -5.64    2.0    128ms
 35   -36.74248067262       -9.93       -6.01    2.0    116ms
 36   -36.74248067268      -10.22       -6.58    2.0    108ms
 37   -36.74248067267   +  -11.28       -6.55    3.0    143ms
 38   -36.74248067268      -11.31       -6.66    2.0    114ms
 39   -36.74248067267   +  -11.42       -6.57    2.0    109ms
 40   -36.74248067268      -11.19       -6.87    2.0    109ms
 41   -36.74248067268      -11.81       -7.03    2.0    119ms
 42   -36.74248067268   +  -11.62       -6.82    2.0    134ms
 43   -36.74248067268      -11.76       -6.95    3.0    126ms
 44   -36.74248067268      -12.12       -7.45    2.0    114ms
 45   -36.74248067268      -12.97       -7.88    3.0    118ms
 46   -36.74248067268   +    -Inf       -7.82    3.0    142ms
 47   -36.74248067268   +  -14.15       -7.72    2.0    119ms
 48   -36.74248067268      -14.15       -7.94    2.0    125ms
 49   -36.74248067268   +  -13.25       -7.61    2.0    119ms
 50   -36.74248067268      -13.25       -8.07    3.0    141ms
 51   -36.74248067268   +    -Inf       -8.19    1.0   94.6ms
 52   -36.74248067268   +    -Inf       -8.56    2.0    125ms
 53   -36.74248067268      -14.15       -8.92    2.0    158ms
 54   -36.74248067268      -14.15       -9.26    2.0    102ms
 55   -36.74248067268   +  -14.15       -8.98    3.0    140ms
 56   -36.74248067268   +    -Inf       -9.51    3.0    129ms
 57   -36.74248067268   +    -Inf       -9.64    1.0   93.6ms
 58   -36.74248067268   +    -Inf       -9.84    2.0    106ms
 59   -36.74248067268   +    -Inf      -10.06    2.0    127ms
 60   -36.74248067268   +    -Inf      -10.20    2.0    114ms
 61   -36.74248067268   +    -Inf      -10.37    2.0    106ms
 62   -36.74248067268   +    -Inf      -10.52    2.0    105ms
 63   -36.74248067268   +    -Inf      -10.38    1.0   93.4ms
 64   -36.74248067268   +    -Inf      -11.07    2.0    108ms
 65   -36.74248067268      -14.15      -10.70    3.0    143ms
 66   -36.74248067268   +  -14.15      -11.43    3.0    154ms
 67   -36.74248067268   +    -Inf      -11.47    2.0    127ms
 68   -36.74248067268   +    -Inf      -11.58    2.0    114ms
 69   -36.74248067268   +    -Inf      -11.92    1.0   93.6ms
 70   -36.74248067268   +    -Inf      -11.85    3.0    139ms
 71   -36.74248067268      -13.85      -12.14    2.0    107ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73346626760                   -0.88   12.0    348ms
  2   -36.73991756720       -2.19       -1.36    1.0   96.0ms
  3   -36.74029317521       -3.43       -1.76    4.0    127ms
  4   -36.74215714240       -2.73       -2.16    2.0    102ms
  5   -36.74232935532       -3.76       -2.63    3.0    110ms
  6   -36.74241668338       -4.06       -2.51    4.0    142ms
  7   -36.74246499889       -4.32       -3.05    1.0   92.8ms
  8   -36.74247811535       -4.88       -3.32    5.0    119ms
  9   -36.74248013389       -5.69       -3.47    2.0    108ms
 10   -36.74248045374       -6.50       -3.85    1.0   98.6ms
 11   -36.74248060920       -6.81       -4.04    3.0    109ms
 12   -36.74248060613   +   -8.51       -4.41    3.0    120ms
 13   -36.74248067143       -7.19       -4.82    2.0    131ms
 14   -36.74248067175       -9.48       -4.93    2.0    106ms
 15   -36.74248067187       -9.92       -5.22    2.0    111ms
 16   -36.74248067262       -9.13       -5.57    2.0    107ms
 17   -36.74248067266      -10.38       -6.00    5.0    127ms
 18   -36.74248067267      -11.54       -6.31    3.0    140ms
 19   -36.74248067268      -10.85       -6.81    3.0    116ms
 20   -36.74248067268   +  -12.12       -6.77    3.0    144ms
 21   -36.74248067268      -11.97       -7.19    2.0    115ms
 22   -36.74248067268      -12.85       -7.27    1.0   95.8ms
 23   -36.74248067268      -14.15       -7.62    1.0    100ms
 24   -36.74248067268      -14.15       -7.91    3.0    127ms
 25   -36.74248067268   +    -Inf       -8.15    3.0    140ms
 26   -36.74248067268      -14.15       -8.53    1.0   95.9ms
 27   -36.74248067268   +  -14.15       -8.72    3.0    140ms
 28   -36.74248067268   +  -14.15       -9.02    1.0   95.7ms
 29   -36.74248067268      -13.67       -9.71    3.0    128ms
 30   -36.74248067268   +  -13.67       -9.85    3.0    134ms
 31   -36.74248067268      -14.15      -10.03    4.0    116ms
 32   -36.74248067268      -13.67      -10.43    2.0    115ms
 33   -36.74248067268   +  -13.85      -10.85    2.0    129ms
 34   -36.74248067268   +  -14.15      -11.08    2.0    116ms
 35   -36.74248067268   +    -Inf      -11.33    2.0    129ms
 36   -36.74248067268      -14.15      -11.71    1.0    101ms
 37   -36.74248067268   +    -Inf      -11.99    1.0   95.4ms
 38   -36.74248067268   +    -Inf      -12.47    2.0    128ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448898011611

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244211113567346

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723582614969774

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).