Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73123404947                   -0.88   13.0    381ms
  2   -36.63881599238   +   -1.03       -1.38    1.0   87.3ms
  3   +27.01994189603   +    1.80       -0.16    7.0    241ms
  4   -36.21514380117        1.80       -0.92    6.0    234ms
  5   -36.33414164448       -0.92       -1.13    4.0    156ms
  6   -34.79459001492   +    0.19       -0.92    4.0    158ms
  7   -36.69064552086        0.28       -1.59    3.0    148ms
  8   -36.74035792297       -1.30       -1.96    2.0    109ms
  9   -36.74142368607       -2.97       -2.15    2.0    111ms
 10   -36.73849990343   +   -2.53       -2.00    2.0    132ms
 11   -36.74138389679       -2.54       -2.18    2.0    125ms
 12   -36.74225790584       -3.06       -2.42    2.0    109ms
 13   -36.74230531646       -4.32       -2.67    1.0   98.1ms
 14   -36.74180199788   +   -3.30       -2.55    2.0    122ms
 15   -36.72838110690   +   -1.87       -1.99    3.0    151ms
 16   -36.74239137767       -1.85       -2.62    4.0    159ms
 17   -36.74197099295   +   -3.38       -2.63    2.0    128ms
 18   -36.74247573366       -3.30       -3.39    2.0    108ms
 19   -36.74162931479   +   -3.07       -2.58    4.0    169ms
 20   -36.74246398039       -3.08       -3.42    4.0    171ms
 21   -36.74247568146       -4.93       -3.39    2.0    111ms
 22   -36.74247969124       -5.40       -3.91    1.0   96.0ms
 23   -36.74247891710   +   -6.11       -3.71    3.0    145ms
 24   -36.74248022830       -5.88       -3.99    2.0    126ms
 25   -36.74248045299       -6.65       -4.27    2.0    112ms
 26   -36.74248066541       -6.67       -4.73    2.0    108ms
 27   -36.74248008519   +   -6.24       -4.17    3.0    152ms
 28   -36.74248062398       -6.27       -4.49    4.0    154ms
 29   -36.74248065851       -7.46       -4.91    2.0    112ms
 30   -36.74248066873       -7.99       -5.17    2.0    117ms
 31   -36.74248066132   +   -8.13       -5.02    3.0    149ms
 32   -36.74248065802   +   -8.48       -4.97    3.0    143ms
 33   -36.74248067218       -7.85       -5.58    2.0    114ms
 34   -36.74248067267       -9.31       -6.07    3.0    140ms
 35   -36.74248067244   +   -9.65       -5.82    3.0    146ms
 36   -36.74248067267       -9.65       -6.27    2.0    126ms
 37   -36.74248067268      -11.04       -6.38    2.0    124ms
 38   -36.74248067268      -11.52       -6.64    1.0   95.6ms
 39   -36.74248067268      -12.34       -6.69    2.0    136ms
 40   -36.74248067268      -11.78       -6.98    1.0   97.3ms
 41   -36.74248067267   +  -11.11       -6.58    3.0    132ms
 42   -36.74248067268      -11.10       -7.55    3.0    265ms
 43   -36.74248067268   +  -12.17       -7.10    3.0    797ms
 44   -36.74248067268      -13.00       -7.15    4.0    164ms
 45   -36.74248067268      -12.23       -7.94    3.0    146ms
 46   -36.74248067268   +  -13.45       -7.63    3.0    135ms
 47   -36.74248067268      -13.45       -8.21    3.0    140ms
 48   -36.74248067268   +    -Inf       -8.30    2.0    149ms
 49   -36.74248067268      -14.15       -8.39    2.0    127ms
 50   -36.74248067268      -14.15       -8.65    2.0    113ms
 51   -36.74248067268   +    -Inf       -9.02    1.0   95.6ms
 52   -36.74248067268   +  -14.15       -9.07    3.0    145ms
 53   -36.74248067268      -14.15       -8.68    3.0    145ms
 54   -36.74248067268   +    -Inf       -9.40    3.0    145ms
 55   -36.74248067268   +    -Inf       -8.94    3.0    145ms
 56   -36.74248067268   +    -Inf       -9.72    3.0    135ms
 57   -36.74248067268      -14.15       -9.46    3.0    142ms
 58   -36.74248067268   +  -14.15       -9.83    2.0    105ms
 59   -36.74248067268   +    -Inf       -9.65    3.0    126ms
 60   -36.74248067268   +    -Inf      -10.04    2.0    117ms
 61   -36.74248067268   +    -Inf      -10.50    2.0    102ms
 62   -36.74248067268   +  -14.15      -11.04    2.0    124ms
 63   -36.74248067268   +  -14.15      -10.80    3.0    137ms
 64   -36.74248067268      -13.85      -11.22    2.0    108ms
 65   -36.74248067268   +    -Inf      -10.95    3.0    139ms
 66   -36.74248067268   +  -13.85      -11.30    3.0    145ms
 67   -36.74248067268      -14.15      -11.25    3.0    125ms
 68   -36.74248067268      -14.15      -11.69    2.0    108ms
 69   -36.74248067268   +    -Inf      -11.41    3.0    135ms
 70   -36.74248067268   +  -14.15      -11.76    2.0    120ms
 71   -36.74248067268      -14.15      -11.58    3.0    128ms
 72   -36.74248067268   +    -Inf      -12.39    2.0    109ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73221337770                   -0.88   11.0    328ms
  2   -36.73973484893       -2.12       -1.36    1.0   89.3ms
  3   -36.74059296637       -3.07       -1.80    4.0    118ms
  4   -36.74207172559       -2.83       -2.12    3.0    109ms
  5   -36.74242857809       -3.45       -2.73    2.0    104ms
  6   -36.74241853605   +   -5.00       -2.51    6.0    144ms
  7   -36.74247144903       -4.28       -3.01    1.0   91.8ms
  8   -36.74247908017       -5.12       -3.51    1.0   92.0ms
  9   -36.74247928995       -6.68       -3.42    4.0    136ms
 10   -36.74248053580       -5.90       -4.02    1.0   93.0ms
 11   -36.74248063937       -6.98       -4.26    2.0    125ms
 12   -36.74248060771   +   -7.50       -4.39    2.0    103ms
 13   -36.74248066345       -7.25       -4.76    1.0   94.1ms
 14   -36.74248067201       -8.07       -5.10    2.0    127ms
 15   -36.74248067259       -9.23       -5.39    2.0    101ms
 16   -36.74248067258   +  -11.01       -5.63    3.0    124ms
 17   -36.74248067262      -10.48       -5.77    1.0   95.6ms
 18   -36.74248067267      -10.27       -6.16    2.0    103ms
 19   -36.74248067268      -10.93       -6.76    3.0    133ms
 20   -36.74248067268      -11.96       -7.06    5.0    112ms
 21   -36.74248067268   +  -13.55       -7.12    2.0    128ms
 22   -36.74248067268      -13.37       -7.25    2.0    110ms
 23   -36.74248067268      -13.15       -7.59    1.0   97.6ms
 24   -36.74248067268   +  -14.15       -7.74    2.0    110ms
 25   -36.74248067268      -13.55       -8.29    2.0    105ms
 26   -36.74248067268   +  -14.15       -8.46    2.0    130ms
 27   -36.74248067268      -14.15       -8.63    1.0   96.5ms
 28   -36.74248067268      -14.15       -9.01    2.0   97.6ms
 29   -36.74248067268   +  -13.85       -9.28    2.0    121ms
 30   -36.74248067268      -13.67       -9.52    1.0   96.3ms
 31   -36.74248067268   +  -14.15      -10.19    3.0    124ms
 32   -36.74248067268   +    -Inf      -10.18    3.0    147ms
 33   -36.74248067268   +    -Inf      -10.37    1.0   96.3ms
 34   -36.74248067268   +    -Inf      -10.73    2.0    118ms
 35   -36.74248067268   +  -14.15      -11.14    1.0   92.8ms
 36   -36.74248067268      -14.15      -11.17    3.0    137ms
 37   -36.74248067268   +  -14.15      -11.42    1.0   95.3ms
 38   -36.74248067268      -14.15      -11.84    2.0    108ms
 39   -36.74248067268   +    -Inf      -12.15    2.0    128ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.024488980393166

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.24421111385837

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.72358138249738

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).