Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73348129565                   -0.88   12.0    341ms
  2   -36.62153515407   +   -0.95       -1.42    1.0   83.8ms
  3   +38.05166791736   +    1.87       -0.12    8.0    228ms
  4   -36.61189627498        1.87       -1.12    8.0    221ms
  5   -35.93297284930   +   -0.17       -1.10    3.0    141ms
  6   -36.25834325368       -0.49       -1.22    4.0    150ms
  7   -36.72541307474       -0.33       -1.72    3.0    125ms
  8   -36.73158685781       -2.21       -1.98    2.0    101ms
  9   -36.73756738298       -2.22       -1.95    2.0    125ms
 10   -36.74081865327       -2.49       -2.22    2.0    104ms
 11   -36.74200766616       -2.92       -2.34    2.0    103ms
 12   -36.74230785903       -3.52       -2.60    1.0   94.6ms
 13   -36.74241962797       -3.95       -2.84    2.0   97.4ms
 14   -36.74243507746       -4.81       -2.82    2.0    100ms
 15   -36.73927926423   +   -2.50       -2.31    3.0    134ms
 16   -36.74232098269       -2.52       -2.85    3.0    134ms
 17   -36.74242626987       -3.98       -3.10    2.0    108ms
 18   -36.73799827840   +   -2.35       -2.24    4.0    153ms
 19   -36.74247978695       -2.35       -3.72    4.0    145ms
 20   -36.74247672634   +   -5.51       -3.57    3.0    142ms
 21   -36.74246846136   +   -5.08       -3.33    3.0    130ms
 22   -36.74247766626       -5.04       -3.77    3.0    130ms
 23   -36.74248034880       -5.57       -4.09    1.0   88.4ms
 24   -36.74248064761       -6.52       -4.59    2.0    125ms
 25   -36.74248066512       -7.76       -4.83    3.0    116ms
 26   -36.74248066649       -8.86       -4.81    2.0    103ms
 27   -36.74248045563   +   -6.68       -4.36    3.0    129ms
 28   -36.74248065789       -6.69       -4.95    3.0    133ms
 29   -36.74248067154       -7.86       -5.35    2.0    234ms
 30   -36.74248067254       -9.00       -5.85    2.0    701ms
 31   -36.74248067228   +   -9.59       -5.68    3.0    137ms
 32   -36.74248067229      -10.96       -5.75    3.0    124ms
 33   -36.74248067264       -9.45       -6.09    2.0    116ms
 34   -36.74248067263   +  -10.98       -6.19    2.0    115ms
 35   -36.74248067267      -10.42       -6.31    2.0    112ms
 36   -36.74248067268      -11.38       -6.64    1.0    100ms
 37   -36.74248067268      -11.34       -6.69    2.0    121ms
 38   -36.74248067268   +  -12.40       -6.84    2.0    104ms
 39   -36.74248067268      -12.36       -6.93    2.0   98.5ms
 40   -36.74248067268      -12.01       -7.21    2.0    100ms
 41   -36.74248067268      -13.85       -7.09    3.0    122ms
 42   -36.74248067268   +  -11.66       -6.86    3.0    122ms
 43   -36.74248067268      -11.63       -7.48    3.0    131ms
 44   -36.74248067268   +  -12.47       -7.18    3.0    136ms
 45   -36.74248067268      -12.34       -8.23    3.0    126ms
 46   -36.74248067268   +  -14.15       -8.19    3.0    135ms
 47   -36.74248067268      -13.85       -8.38    2.0    105ms
 48   -36.74248067268      -14.15       -8.39    2.0    101ms
 49   -36.74248067268      -13.85       -8.91    2.0    102ms
 50   -36.74248067268   +  -13.55       -8.90    3.0    139ms
 51   -36.74248067268      -14.15       -9.29    1.0   89.4ms
 52   -36.74248067268      -14.15       -9.65    1.0   92.7ms
 53   -36.74248067268   +    -Inf       -9.53    3.0    133ms
 54   -36.74248067268   +  -14.15      -10.03    1.0   92.5ms
 55   -36.74248067268   +    -Inf      -10.07    2.0    103ms
 56   -36.74248067268      -14.15       -9.58    3.0    130ms
 57   -36.74248067268   +  -13.85      -10.17    3.0    131ms
 58   -36.74248067268      -13.85       -9.82    3.0    131ms
 59   -36.74248067268   +    -Inf      -10.47    3.0    131ms
 60   -36.74248067268   +  -13.85      -10.53    2.0    125ms
 61   -36.74248067268      -13.85      -10.46    2.0    104ms
 62   -36.74248067268   +    -Inf      -10.77    2.0    107ms
 63   -36.74248067268   +    -Inf      -11.09    1.0   92.5ms
 64   -36.74248067268   +    -Inf      -11.32    3.0    112ms
 65   -36.74248067268   +    -Inf      -11.74    2.0    111ms
 66   -36.74248067268   +    -Inf      -11.81    2.0    125ms
 67   -36.74248067268   +    -Inf      -11.73    2.0    126ms
 68   -36.74248067268   +    -Inf      -12.23    3.0    112ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73334974613                   -0.88   12.0    337ms
  2   -36.74007238182       -2.17       -1.36    1.0   85.2ms
  3   -36.73937937993   +   -3.16       -1.65    3.0    126ms
  4   -36.74225840820       -2.54       -2.19    1.0   89.7ms
  5   -36.74237305696       -3.94       -2.57    5.0    111ms
  6   -36.74241698598       -4.36       -2.46    3.0    120ms
  7   -36.74247688271       -4.22       -3.18    1.0   91.1ms
  8   -36.74247807363       -5.92       -3.16    3.0    113ms
  9   -36.74247941672       -5.87       -3.29    1.0   92.4ms
 10   -36.74247979845       -6.42       -3.81    1.0   89.2ms
 11   -36.74248058819       -6.10       -4.18    2.0    117ms
 12   -36.74248062902       -7.39       -4.29    1.0   96.3ms
 13   -36.74248067016       -7.39       -4.67    2.0    132ms
 14   -36.74248067204       -8.73       -5.05    2.0    100ms
 15   -36.74248067234       -9.52       -5.50    3.0    123ms
 16   -36.74248067261       -9.56       -5.79    5.0    111ms
 17   -36.74248067268      -10.19       -6.23    2.0    126ms
 18   -36.74248067268   +  -11.63       -6.41    2.0    103ms
 19   -36.74248067268      -11.21       -6.69    2.0    108ms
 20   -36.74248067268      -12.56       -6.89    2.0    102ms
 21   -36.74248067268      -13.45       -7.43    1.0   94.2ms
 22   -36.74248067268      -13.30       -7.76    4.0    140ms
 23   -36.74248067268   +    -Inf       -8.13    7.0    127ms
 24   -36.74248067268      -14.15       -8.24    2.0    126ms
 25   -36.74248067268   +  -13.85       -8.58    1.0   95.7ms
 26   -36.74248067268      -14.15       -9.15    1.0   94.0ms
 27   -36.74248067268      -13.85       -9.24    3.0    138ms
 28   -36.74248067268   +    -Inf       -9.67    1.0   93.8ms
 29   -36.74248067268   +  -14.15       -9.98    2.0    123ms
 30   -36.74248067268   +  -13.85      -10.53    1.0   95.6ms
 31   -36.74248067268   +    -Inf      -10.70    4.0    140ms
 32   -36.74248067268      -13.85      -10.98    2.0    108ms
 33   -36.74248067268      -14.15      -11.26    5.0    114ms
 34   -36.74248067268   +  -13.67      -11.41    2.0    126ms
 35   -36.74248067268      -13.85      -11.71    1.0   90.8ms
 36   -36.74248067268   +    -Inf      -11.95    3.0    125ms
 37   -36.74248067268   +    -Inf      -12.12    1.0   94.1ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02448898035782

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244211113821244

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723595267865664

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).