Analysing SCF convergence

The goal of this example is to explain the differing convergence behaviour of SCF algorithms depending on the choice of the mixing. For this we look at the eigenpairs of the Jacobian governing the SCF convergence, that is

\[1 - α P^{-1} \varepsilon^\dagger \qquad \text{with} \qquad \varepsilon^\dagger = (1-\chi_0 K).\]

where $α$ is the damping $P^{-1}$ is the mixing preconditioner (e.g. KerkerMixing, LdosMixing) and $\varepsilon^\dagger$ is the dielectric operator.

We thus investigate the largest and smallest eigenvalues of $(P^{-1} \varepsilon^\dagger)$ and $\varepsilon^\dagger$. The ratio of largest to smallest eigenvalue of this operator is the condition number

\[\kappa = \frac{\lambda_\text{max}}{\lambda_\text{min}},\]

which can be related to the rate of convergence of the SCF. The smaller the condition number, the faster the convergence. For more details on SCF methods, see Self-consistent field methods.

For our investigation we consider a crude aluminium setup:

using AtomsBuilder
using DFTK

system_Al = bulk(:Al; cubic=true) * (4, 1, 1)
FlexibleSystem(Al₁₆, periodicity = TTT):
    cell_vectors      : [    16.2        0        0;
                                0     4.05        0;
                                0        0     4.05]u"Å"

and we discretise:

using PseudoPotentialData

pseudopotentials = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model_Al = model_DFT(system_Al; functionals=LDA(), temperature=1e-3,
                     symmetries=false, pseudopotentials)
basis_Al = PlaneWaveBasis(model_Al; Ecut=7, kgrid=[1, 1, 1]);

On aluminium (a metal) already for moderate system sizes (like the 8 layers we consider here) the convergence without mixing / preconditioner is slow:

# Note: DFTK uses the self-adapting LdosMixing() by default, so to truly disable
#       any preconditioning, we need to supply `mixing=SimpleMixing()` explicitly.
scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=SimpleMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73437371046                   -0.88   11.0    383ms
  2   -36.65385140711   +   -1.09       -1.48    1.0   88.5ms
  3   +30.48889329474   +    1.83       -0.15    8.0    247ms
  4   -36.61466156812        1.83       -1.24    6.0    227ms
  5   -36.44326387658   +   -0.77       -1.30    4.0    154ms
  6   -36.07583982608   +   -0.43       -1.15    3.0    144ms
  7   -36.72754489330       -0.19       -1.74    3.0    138ms
  8   -36.73884445109       -1.95       -2.10    2.0    106ms
  9   -36.73755670746   +   -2.89       -2.12    2.0    131ms
 10   -36.74121937176       -2.44       -2.24    2.0    113ms
 11   -36.74123558586       -4.79       -2.26    2.0    124ms
 12   -36.74244706552       -2.92       -2.73    2.0    109ms
 13   -36.74245848680       -4.94       -2.83    2.0    113ms
 14   -36.74246137403       -5.54       -2.95    1.0   96.4ms
 15   -36.74044907478   +   -2.70       -2.37    3.0    142ms
 16   -36.74217071674       -2.76       -2.77    3.0    143ms
 17   -36.74238170371       -3.68       -2.97    2.0    111ms
 18   -36.74205900050   +   -3.49       -2.75    3.0    136ms
 19   -36.74244832982       -3.41       -3.16    3.0    142ms
 20   -36.74247474306       -4.58       -3.49    2.0    114ms
 21   -36.74247644368       -5.77       -3.70    2.0    132ms
 22   -36.74247981859       -5.47       -3.95    2.0    112ms
 23   -36.74248038469       -6.25       -4.19    1.0   97.0ms
 24   -36.74248056656       -6.74       -4.30    2.0    132ms
 25   -36.74248065820       -7.04       -4.64    2.0    114ms
 26   -36.74248067068       -7.90       -4.98    1.0   94.1ms
 27   -36.74248066332   +   -8.13       -4.97    2.0    133ms
 28   -36.74248067028       -8.16       -5.27    2.0    107ms
 29   -36.74248066443   +   -8.23       -5.07    3.0    143ms
 30   -36.74248066343   +   -9.00       -5.05    3.0    144ms
 31   -36.74248067243       -8.05       -5.79    2.0    122ms
 32   -36.74248067227   +   -9.78       -5.64    3.0    141ms
 33   -36.74248067263       -9.44       -6.11    2.0    114ms
 34   -36.74248067239   +   -9.62       -5.78    3.0    143ms
 35   -36.74248067266       -9.57       -6.07    2.0    125ms
 36   -36.74248067249   +   -9.77       -5.85    3.0    143ms
 37   -36.74248067268       -9.71       -6.79    3.0    118ms
 38   -36.74248067268      -12.77       -6.85    3.0    161ms
 39   -36.74248067268      -12.13       -7.07    2.0    115ms
 40   -36.74248067268   +  -12.97       -7.10    1.0   95.9ms
 41   -36.74248067268   +  -13.85       -7.10    2.0    102ms
 42   -36.74248067267   +  -10.81       -6.44    3.0    144ms
 43   -36.74248067268      -10.80       -7.41    3.0    152ms
 44   -36.74248067268      -12.97       -7.67    2.0    133ms
 45   -36.74248067268   +    -Inf       -7.97    1.0   96.4ms
 46   -36.74248067268      -13.85       -8.21    2.0    105ms
 47   -36.74248067268   +  -13.85       -7.95    3.0    145ms
 48   -36.74248067268      -13.67       -8.27    3.0    142ms
 49   -36.74248067268   +    -Inf       -8.21    2.0    125ms
 50   -36.74248067268      -14.15       -8.68    2.0    109ms
 51   -36.74248067268   +  -14.15       -8.71    3.0    124ms
 52   -36.74248067268   +    -Inf       -8.65    2.0    106ms
 53   -36.74248067268   +    -Inf       -9.04    2.0    114ms
 54   -36.74248067268   +    -Inf       -9.02    3.0    142ms
 55   -36.74248067268   +    -Inf       -9.58    2.0    112ms
 56   -36.74248067268   +  -14.15       -9.59    2.0    110ms
 57   -36.74248067268   +    -Inf       -9.27    3.0    136ms
 58   -36.74248067268   +    -Inf       -9.63    3.0    133ms
 59   -36.74248067268   +    -Inf       -9.72    2.0    122ms
 60   -36.74248067268      -14.15       -9.78    1.0   96.9ms
 61   -36.74248067268   +    -Inf      -10.17    2.0    108ms
 62   -36.74248067268   +    -Inf      -10.55    3.0    142ms
 63   -36.74248067268   +  -14.15      -10.45    2.0    112ms
 64   -36.74248067268      -14.15      -10.69    2.0    115ms
 65   -36.74248067268   +    -Inf      -10.79    1.0   96.7ms
 66   -36.74248067268   +    -Inf      -10.94    1.0   93.5ms
 67   -36.74248067268      -14.15      -10.81    3.0    137ms
 68   -36.74248067268   +  -14.15      -11.52    2.0    114ms
 69   -36.74248067268   +  -14.15      -11.34    3.0    152ms
 70   -36.74248067268      -13.85      -11.36    2.0    113ms
 71   -36.74248067268   +  -13.85      -11.28    3.0    132ms
 72   -36.74248067268      -14.15      -12.02    2.0    115ms

while when using the Kerker preconditioner it is much faster:

scfres_Al = self_consistent_field(basis_Al; tol=1e-12, mixing=KerkerMixing());
n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime
---   ---------------   ---------   ---------   ----   ------
  1   -36.73395235646                   -0.88   11.0    384ms
  2   -36.74001965493       -2.22       -1.36    1.0   90.2ms
  3   -36.73793298459   +   -2.68       -1.54    3.0    136ms
  4   -36.74235572605       -2.35       -2.31    1.0   94.0ms
  5   -36.74240510370       -4.31       -2.45    8.0    152ms
  6   -36.74240619859       -5.96       -2.41    1.0   94.5ms
  7   -36.74247642148       -4.15       -3.13    1.0   96.0ms
  8   -36.74247825895       -5.74       -3.15    3.0    141ms
  9   -36.74248035770       -5.68       -3.68    1.0   93.9ms
 10   -36.74248051978       -6.79       -3.92    2.0    125ms
 11   -36.74248063718       -6.93       -4.47    1.0   97.3ms
 12   -36.74248067021       -7.48       -4.84    3.0    142ms
 13   -36.74248067085       -9.19       -4.92    3.0    142ms
 14   -36.74248067224       -8.86       -5.42    1.0   94.9ms
 15   -36.74248067265       -9.39       -5.87    3.0    142ms
 16   -36.74248067268      -10.53       -6.34    4.0    116ms
 17   -36.74248067268      -12.06       -6.79    3.0    141ms
 18   -36.74248067268      -12.46       -7.04    6.0    133ms
 19   -36.74248067268      -13.11       -7.35    2.0    135ms
 20   -36.74248067268      -13.45       -7.84    1.0   95.5ms
 21   -36.74248067268   +  -13.85       -8.21    3.0    129ms
 22   -36.74248067268   +    -Inf       -8.34    3.0    142ms
 23   -36.74248067268   +    -Inf       -8.72    1.0   98.3ms
 24   -36.74248067268      -13.85       -8.87    2.0    114ms
 25   -36.74248067268   +    -Inf       -9.44    2.0    102ms
 26   -36.74248067268   +    -Inf       -9.71    4.0    148ms
 27   -36.74248067268      -13.85       -9.88    2.0    105ms
 28   -36.74248067268   +  -13.67      -10.30    2.0    118ms
 29   -36.74248067268   +  -14.15      -10.44    3.0    142ms
 30   -36.74248067268      -13.85      -11.05    2.0    102ms
 31   -36.74248067268   +    -Inf      -10.95    3.0    153ms
 32   -36.74248067268   +    -Inf      -11.31    1.0   98.5ms
 33   -36.74248067268   +    -Inf      -11.93    3.0    127ms
 34   -36.74248067268   +  -13.85      -11.83    3.0    163ms
 35   -36.74248067268      -14.15      -12.15    1.0   98.2ms

Given this scfres_Al we construct functions representing $\varepsilon^\dagger$ and $P^{-1}$:

# Function, which applies P^{-1} for the case of KerkerMixing
Pinv_Kerker(δρ) = DFTK.mix_density(KerkerMixing(), basis_Al, δρ)

# Function which applies ε† = 1 - χ0 K
function epsilon(δρ)
    δV   = apply_kernel(basis_Al, δρ; ρ=scfres_Al.ρ)
    χ0δV = apply_χ0(scfres_Al, δV).δρ
    δρ - χ0δV
end
epsilon (generic function with 1 method)

With these functions available we can now compute the desired eigenvalues. For simplicity we only consider the first few largest ones.

using KrylovKit
λ_Simple, X_Simple = eigsolve(epsilon, randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)
λ_Simple_max = maximum(real.(λ_Simple))
44.02449278661272

The smallest eigenvalue is a bit more tricky to obtain, so we will just assume

λ_Simple_min = 0.952
0.952

This makes the condition number around 30:

cond_Simple = λ_Simple_max / λ_Simple_min
46.244215111988154

This does not sound large compared to the condition numbers you might know from linear systems.

However, this is sufficient to cause a notable slowdown, which would be even more pronounced if we did not use Anderson, since we also would need to drastically reduce the damping (try it!).

Having computed the eigenvalues of the dielectric matrix we can now also look at the eigenmodes, which are responsible for the bad convergence behaviour. The largest eigenmode for example:

using Statistics
using Plots
mode_xy = mean(real.(X_Simple[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

This mode can be physically interpreted as the reason why this SCF converges slowly. For example in this case it displays a displacement of electron density from the centre to the extremal parts of the unit cell. This phenomenon is called charge-sloshing.

We repeat the exercise for the Kerker-preconditioned dielectric operator:

λ_Kerker, X_Kerker = eigsolve(Pinv_Kerker ∘ epsilon,
                              randn(size(scfres_Al.ρ)), 3, :LM;
                              tol=1e-3, eager=true, verbosity=2)

mode_xy = mean(real.(X_Kerker[1]), dims=3)[:, :, 1, 1]  # Average along z axis
heatmap(mode_xy', c=:RdBu_11, aspect_ratio=1, grid=false,
        legend=false, clim=(-0.006, 0.006))
Example block output

Clearly the charge-sloshing mode is no longer dominating.

The largest eigenvalue is now

maximum(real.(λ_Kerker))
4.723638343557099

Since the smallest eigenvalue in this case remains of similar size (it is now around 0.8), this implies that the conditioning improves noticeably when KerkerMixing is used.

Note: Since LdosMixing requires solving a linear system at each application of $P^{-1}$, determining the eigenvalues of $P^{-1} \varepsilon^\dagger$ is slightly more expensive and thus not shown. The results are similar to KerkerMixing, however.

We could repeat the exercise for an insulating system (e.g. a Helium chain). In this case you would notice that the condition number without mixing is actually smaller than the condition number with Kerker mixing. In other words employing Kerker mixing makes the convergence worse. A closer investigation of the eigenvalues shows that Kerker mixing reduces the smallest eigenvalue of the dielectric operator this time, while keeping the largest value unchanged. Overall the conditioning thus workens.

Takeaways:

  • For metals the conditioning of the dielectric matrix increases steeply with system size.
  • The Kerker preconditioner tames this and makes SCFs on large metallic systems feasible by keeping the condition number of order 1.
  • For insulating systems the best approach is to not use any mixing.
  • The ideal mixing strongly depends on the dielectric properties of system which is studied (metal versus insulator versus semiconductor).