AtomsBase integration
AtomsBase.jl is a common interface for representing atomic structures in Julia. DFTK directly supports using such structures to run a calculation as is demonstrated here.
using DFTK
using AtomsBuilder
Feeding an AtomsBase AbstractSystem to DFTK
In this example we construct a bulk silicon system using the bulk
function from AtomsBuilder. This function uses tabulated data to set up a reasonable starting geometry and lattice for bulk silicon.
system = bulk(:Si)
FlexibleSystem(Si₂, periodicity = TTT):
cell_vectors : [ 0 2.715 2.715;
2.715 0 2.715;
2.715 2.715 0]u"Å"
Atom(Si, [ 0, 0, 0]u"Å")
Atom(Si, [ 1.3575, 1.3575, 1.3575]u"Å")
By default the atoms of an AbstractSystem
employ the bare Coulomb potential. To employ pseudpotential models (which is almost always advisable for plane-wave DFT) one employs the pseudopotential
keyword argument in model constructors such as model_DFT
. For example we can employ a PseudoFamily
object from the PseudoPotentialData package. See its documentation for more information on the available pseudopotential families and how to select them.
using PseudoPotentialData # defines PseudoFamily
pd_lda_family = PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
model = model_DFT(system; functionals=LDA(), temperature=1e-3,
pseudopotentials=pd_lda_family)
Model(lda_x+lda_c_pw, 3D):
lattice (in Bohr) : [0 , 5.13061 , 5.13061 ]
[5.13061 , 0 , 5.13061 ]
[5.13061 , 5.13061 , 0 ]
unit cell volume : 270.11 Bohr³
atoms : Si₂
pseudopot. family : PseudoFamily("dojo.nc.sr.lda.v0_4_1.standard.upf")
num. electrons : 8
spin polarization : none
temperature : 0.001 Ha
smearing : DFTK.Smearing.FermiDirac()
terms : Kinetic()
AtomicLocal()
AtomicNonlocal()
Ewald(nothing)
PspCorrection()
Hartree()
Xc(lda_x, lda_c_pw)
Entropy()
Alternatively the pseudopotentials
object also accepts a Dict{Symbol,String}
, which provides for each element symbol the filename or identifier of the pseudopotential to be employed, e.g.
path_to_pspfile = PseudoFamily("cp2k.nc.sr.lda.v0_1.semicore.gth")[:Si]
model = model_DFT(system; functionals=LDA(), temperature=1e-3,
pseudopotentials=Dict(:Si => path_to_pspfile))
Model(lda_x+lda_c_pw, 3D):
lattice (in Bohr) : [0 , 5.13061 , 5.13061 ]
[5.13061 , 0 , 5.13061 ]
[5.13061 , 5.13061 , 0 ]
unit cell volume : 270.11 Bohr³
atoms : Si₂
atom potentials : ElementPsp(:Si, "/home/runner/.julia/artifacts/966fd9cdcd7dbaba6dc2bf43ee50dd81e63e8837/Si.gth")
ElementPsp(:Si, "/home/runner/.julia/artifacts/966fd9cdcd7dbaba6dc2bf43ee50dd81e63e8837/Si.gth")
num. electrons : 8
spin polarization : none
temperature : 0.001 Ha
smearing : DFTK.Smearing.FermiDirac()
terms : Kinetic()
AtomicLocal()
AtomicNonlocal()
Ewald(nothing)
PspCorrection()
Hartree()
Xc(lda_x, lda_c_pw)
Entropy()
We can then discretise such a model and solve:
basis = PlaneWaveBasis(model; Ecut=15, kgrid=[4, 4, 4])
scfres = self_consistent_field(basis, tol=1e-8);
n Energy log10(ΔE) log10(Δρ) Diag Δtime
--- --------------- --------- --------- ---- ------
1 -7.921697705881 -0.69 5.6 253ms
2 -7.926134119084 -2.35 -1.22 1.0 190ms
3 -7.926833342142 -3.16 -2.37 2.0 201ms
4 -7.926861279063 -4.55 -3.02 3.0 210ms
5 -7.926861655723 -6.42 -3.46 2.1 188ms
6 -7.926861674732 -7.72 -4.01 1.4 168ms
7 -7.926861678825 -8.39 -4.12 1.6 166ms
8 -7.926861681735 -8.54 -4.60 1.0 156ms
9 -7.926861681829 -10.03 -4.93 1.2 154ms
10 -7.926861681863 -10.47 -5.43 1.8 174ms
11 -7.926861681872 -11.05 -5.77 1.4 159ms
12 -7.926861681873 -12.49 -6.40 1.2 170ms
13 -7.926861681873 -13.34 -6.29 2.2 183ms
14 -7.926861681873 -13.88 -6.97 1.0 151ms
15 -7.926861681873 + -14.57 -7.69 1.4 164ms
16 -7.926861681873 + -14.75 -8.32 2.5 190ms
If we did not want to use AtomsBuilder we could of course use any other package which yields an AbstractSystem object. This includes:
Reading a system using AtomsIO
Read a file using AtomsIO, which directly yields an AbstractSystem.
using AtomsIO
system = load_system("Si.extxyz");
Run the LDA calculation:
pseudopotentials = PseudoFamily("cp2k.nc.sr.lda.v0_1.semicore.gth")
model = model_DFT(system; pseudopotentials, functionals=LDA(), temperature=1e-3)
basis = PlaneWaveBasis(model; Ecut=15, kgrid=[4, 4, 4])
scfres = self_consistent_field(basis, tol=1e-8);
n Energy log10(ΔE) log10(Δρ) Diag Δtime
--- --------------- --------- --------- ---- ------
1 -7.921709608728 -0.69 5.6 247ms
2 -7.926136056682 -2.35 -1.22 1.0 181ms
3 -7.926834561108 -3.16 -2.37 2.0 173ms
4 -7.926861292012 -4.57 -3.02 2.9 212ms
5 -7.926861658115 -6.44 -3.47 2.1 176ms
6 -7.926861675503 -7.76 -4.05 1.8 172ms
7 -7.926861677875 -8.62 -4.06 2.0 178ms
8 -7.926861677098 + -9.11 -4.03 1.0 149ms
9 -7.926861681663 -8.34 -4.32 1.0 157ms
10 -7.926861681810 -9.83 -4.29 1.0 150ms
11 -7.926861681832 -10.66 -4.34 1.0 157ms
12 -7.926861681852 -10.70 -4.51 1.0 152ms
13 -7.926861681857 -11.30 -4.60 1.0 157ms
14 -7.926861681836 + -10.68 -4.38 1.0 152ms
15 -7.926861681842 -11.23 -4.39 1.0 159ms
16 -7.926861681870 -10.55 -4.91 1.0 160ms
17 -7.926861681870 + -12.54 -4.89 1.0 153ms
18 -7.926861681873 -11.57 -7.16 1.0 159ms
19 -7.926861681873 -13.32 -7.42 3.8 221ms
20 -7.926861681873 -15.05 -7.77 1.2 165ms
21 -7.926861681873 -15.05 -8.09 1.1 160ms
The same could be achieved using ExtXYZ by system = Atoms(read_frame("Si.extxyz"))
, since the ExtXYZ.Atoms
object is directly AtomsBase-compatible.
Directly setting up a system in AtomsBase
using AtomsBase
using Unitful
using UnitfulAtomic
# Construct a system in the AtomsBase world
a = 10.26u"bohr" # Silicon lattice constant
lattice = a / 2 * [[0, 1, 1.], # Lattice as vector of vectors
[1, 0, 1.],
[1, 1, 0.]]
atoms = [:Si => ones(3)/8, :Si => -ones(3)/8]
system = periodic_system(atoms, lattice; fractional=true)
# Now run the LDA calculation:
pseudopotentials = PseudoFamily("cp2k.nc.sr.lda.v0_1.semicore.gth")
model = model_DFT(system; pseudopotentials, functionals=LDA(), temperature=1e-3)
basis = PlaneWaveBasis(model; Ecut=15, kgrid=[4, 4, 4])
scfres = self_consistent_field(basis, tol=1e-4);
n Energy log10(ΔE) log10(Δρ) Diag Δtime
--- --------------- --------- --------- ---- ------
1 -7.921702335331 -0.69 5.5 304ms
2 -7.926137737936 -2.35 -1.22 1.0 156ms
3 -7.926837816325 -3.15 -2.37 2.0 211ms
4 -7.926864689107 -4.57 -3.02 3.1 247ms
5 -7.926865066216 -6.42 -3.44 1.9 192ms
6 -7.926865085915 -7.71 -3.97 1.6 172ms
7 -7.926865089234 -8.48 -4.06 1.8 182ms
Obtaining an AbstractSystem from DFTK data
At any point we can also get back the DFTK model as an AtomsBase-compatible AbstractSystem
:
second_system = atomic_system(model)
FlexibleSystem(Si₂, periodicity = TTT):
cell_vectors : [ 0 5.13 5.13;
5.13 0 5.13;
5.13 5.13 0]u"a₀"
Atom(Si, [ 1.2825, 1.2825, 1.2825]u"a₀")
Atom(Si, [ -1.2825, -1.2825, -1.2825]u"a₀")
Similarly DFTK offers a method to the atomic_system
and periodic_system
functions (from AtomsBase), which enable a seamless conversion of the usual data structures for setting up DFTK calculations into an AbstractSystem
:
lattice = 5.431u"Å" / 2 * [[0 1 1.];
[1 0 1.];
[1 1 0.]];
Si = ElementPsp(:Si, pseudopotentials)
atoms = [Si, Si]
positions = [ones(3)/8, -ones(3)/8]
third_system = atomic_system(lattice, atoms, positions)
FlexibleSystem(Si₂, periodicity = TTT):
cell_vectors : [ 0 5.13155 5.13155;
5.13155 0 5.13155;
5.13155 5.13155 0]u"a₀"
Atom(Si, [ 1.28289, 1.28289, 1.28289]u"a₀")
Atom(Si, [-1.28289, -1.28289, -1.28289]u"a₀")